
Dr. Babasaheb Ambedkar Technological University
(Established as University of Technology in the State of Maharashtra)
(Under Maharashtra Act No. XXIX of 2014)
P.O. Lonere, Dist. Raigad, Pin 402 103,
Maharashtra Telephone and Fax. 02140 - 275142
www.dbatu.ac.in

PROPOSED CURRICULUM UNDER GRADUATE PROGRAMME B.TECH

MECHANICAL ENGINEERING/MECHANICAL ENGINEERING(SANDWICH)

THIRD YEAR

Vision

The vision of the department is to achieve excellence in teaching, learning, research and transfer of technology and overall development of students.

Mission

Imparting quality education, looking after holistic development of students and conducting need based research and extension.

Graduate Attributes

The Graduate Attributes are the knowledge skills and attitudes which the students have at the time of graduation. These Graduate Attributes identified by National Board of Accreditation are as follows:

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis:** Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **3. Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

- **8. Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Educational Objectives

PEO1	Graduates should excel in engineering positions in industry and other organizations that emphasize design and implementation of engineering systems and devices.			
PEO2	Graduates should excel in best post-graduate engineering institutes, reaching advanced degrees in engineering and related discipline.			
PEO3	Within several years from graduation, alumni should have established a successful career in an engineering-related multidisciplinary field, leading or participating effectively in interdisciplinary engineering projects, as well as continuously adapting to changing technologies.			
PEO4	Graduates are expected to continue personal development through professional study and self-learning.			
PEO5	Graduates are expected to be good citizens and cultured human beings, with full appreciation of the importance of professional, ethical and societal responsibilities.			

Program Outcomes

At the end of the program the student will be able to:

PO1	Apply knowledge of mathematics, science and engineering to analyze, design and evaluate mechanical components and systems using state-of-the-art IT tools.			
PO2	Analyze problems of production engineering including manufacturing and industrial systems to formulate design requirements.			
PO3	Design, implement and evaluate production systems and processes considering public health, safety, cultural, societal and environmental issues.			
PO4	Design and conduct experiments using domain knowledge and analyze data to arrive at valid conclusions.			
PO5	Apply current techniques, skills, knowledge and computer based methods and tools to develop production systems.			
PO6	Analyze the local and global impact of modern technologies on individual organizations, society and culture.			
PO7	Apply knowledge of contemporary issues to investigate and solve problems with a concern for sustainability and eco-friendly environment.			
PO8	Exhibit responsibility in professional, ethical, legal, security and social issues.			
PO9	Function effectively in teams, in diverse and multidisciplinary areas to accomplish common goals.			
PO10	Communicate effectively in diverse groups and exhibit leadership qualities.			
PO11	Apply management principles to manage projects in multidisciplinary environment.			
PO12	Pursue life-long learning as a means to enhance knowledge and skills.			

Rules and Regulations

- 1. The normal duration of the course leading to B.Tech degree will be EIGHT semesters.
- 2. The normal duration of the course leading to M.Tech. degree will be FOUR semesters.
- 3. Each academic year shall be divided into 2 semesters, each of 20 weeks duration, including evaluation and grade finalization, etc. The Academic Session in each semester shall provide for at least 90 Teaching Days, with at least 40 hours of teaching contact periods in a five to six days session per week. The semester that is typically from Mid-July to November is called the ODD SEMESTER, and the one that is from January to Mid-May is called the EVEN SEMESTER. Academic Session may be scheduled for the Summer Session/Semester as well.For 1st year B. Tech and M. Tech the schedule will be decided as per the admission schedule declared by Government of Maharashtra.

- 4. The schedule of academic activities for a Semester, including the dates of registration, mid-semester examination, end-semester examination, inter-semester vacation, etc. shall be referred to as the Academic Calendar of the Semester, which shall be prepared by the Dean (Academic), and announced at least TWO weeks before the Closing Date of the previous Semester.
- 5. The Academic Calendar must be strictly adhered to, and all other activities including co-curricular and/or extra -curricular activities must be scheduled so as not to interfere with the Curricular Activities as stipulated in the Academic Calendar.

REGISTRATION:

- 1. Lower and Upper Limits for Course Credits Registered in a Semester, by a Full-Time Student of a UG/PGProgramme:
- A full time student of a particular UG/PGprogramme shall register for the appropriate number of course credits in each semester/session that is within the minimum and maximum limits specific to that UG/PGprogramme as stipulated in the specific Regulations pertaining to that UG/PGprogramme.
- 2. Mandatory Pre-Registration for higher semesters: In order to facilitate proper planning of the academic activities of a semester, it is essential for the every institute to inform to Dean (Academics) and COE regarding details of total no. of electives offered (Course-wise) along with the number of students opted for the same. This information should be submitted within two weeks from the date of commencement of the semester as per academic calendar.
- 3. PhD students can register for any of PG/PhD courses and the corresponding rules of evaluation will apply.
- 4. Under Graduate students may be permitted to register for a few selected Post Graduate courses, in exceptionally rare circumstances, only if the DUGC/DPGC is convinced of the level of the academic achievement and the potential in a student.

Course Pre-Requisites:

- 1. In order to register for some courses, it may be required either to have exposure in, or to have completed satisfactorily, or to have prior earned credits in, some specified courses.
- 2. Students who do not register on the day announced for the purpose may be permitted LATE REGISTRATION up to the notified day in academic calendar on payment of late fee.
- 3. REGISTRATION IN ABSENTIA will be allowed only in exceptional cases with the approval of the Dean (Academic) / Principal.

- 4. A student will be permitted to register in the next semester only if he fulfills the following conditions:
 - (a) Satisfied all the Academic Requirements to continue with the programme of Studies without termination
 - (b) Cleared all Institute, Hostel and Library dues and fines (if any) of the previous semesters;
 - (c) Paid all required advance payments of the Institute and hostel for the current semester;
 - (d) Not been debarred from registering on any specific ground by the Institute.

EVALUATION SYSTEM:

1. Absolute grading system based on absolute marks as indicated below will be implementeds from academic year 2019-20, starting from I year B.Tech.

Perentag	Lette	Grad
e of	r	e
marks	grad	point
	e	
91-100	EX	10.0
86-90	AA	9.0
81-85	AB	8.5
76-80	BB	8.0
71-75	BC	7.5
66-70	CC	7.0
61-65	CD	6.5
56-60	DD	6.0
51-55	DE	5.5
40-50	EE	5.0
<40	EF	0.0

2. Class is awdared based on CGPA of all eigth semster of B.Tech Program.

CGPA for pass is minimum	CGPA for pass is minimum 5.0				
CGPAupto<5.50	Pass class				
CGPA ≥ 5.50	SecondClass				
%< 6.00					
CGPA ≥ 6.00	First Class				
%< 7.50					
CGPA ≥ 7.50	Distinction				
[Percentage of Marks =CGPA*10.0]					

A total of 100 Marks for each theory course are distributed as follows:

MidSemester Exam (MSE) Marks	20
ContinuousAssesment Marks	20
End	60
SemesterExamination(ESE)Marks	

4.A total of 100 Marks for each practical course are distributed as follows:

1.	Continuous	60
	Assesment Marks	
2.	End Semester	40
	Examination	
	(ESE)Marks	

It is mandatory for every student of B.Tech. to score a minimum of 40 marks out of 100, with a minimum of 20 marks out of 60 marks in End Semester Examination for theory course.

This will be implemented from the first year of B.Tech starting from Academic Year 2019-20

5. Description of Grades:

EX Grade: An 'EX' grade stands for outstanding achievement.

EE Grade: The 'EE' grade stands for minimum passing grade.

The students may appear for the remedial examination for the subjects he/she failed for the current semester of admission only and his/her performance will be awarded with EE grade only.

If any of the student remain Absent for the regular examination due to genuine reason and the same will be verified and tested by the Dean (Academics) or committee constituted by the University Authority.

FF Grade: The 'FF' grade denotes very poor performance, i.e. failure in a course due to poor performance. The students who have been awarded 'FF' grade in a course in any semester must repeat the subject in next semester.

6. Evaluation of Performance:

- 1. Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA)
- (A) Semester Grade Point Average (SGPA) The performance of a student in a semester is indicated by Semester Grade Point Average (SGPA) which is a weighted average of the grade points obtained in all the courses taken by the student in the semester and scaled to a maximum of 10. (SGPI is to be calculated up to two decimal places). A Semester Grade Point Average (SGPA) will be computed for each semester as follows:

$$SGPA = \frac{[\sum_{i=1}^{n} c_{i} g_{i}]}{[\sum_{i=1}^{n} c_{i}]}$$

Where

'n' is the number of subjects for the semester,

'ci' is the number of credits allotted to a particular subject, and

'gi' is the grade-points awarded to the student for the subject based on his performance as

per the above table.

- -SGPA will be rounded off to the second place of decimal and recorded as such.
- (B) Cumulative Grade Point Average (CGPA): An up to date assessment of the overall performance of a student from the time he entered the Institute is obtained by calculating Cumulative Grade Point Average (CGPA) of a student. The CGPA is weighted average of the grade points obtained in all the courses registered by the student since s/he entered the Institute. CGPA is also calculated at the end of every semester (upto two decimal places). Starting from the first semester at the end of each semester (S), a Cumulative Grade Point Average (CGPA) will be computed as follows:

$$CGPA = \frac{\left[\sum_{i=1}^{m} c_i g_i\right]}{\left[\sum_{i=1}^{m} c_i\right]}$$

Where

'm' is the total number of subjects from the first semester onwards up to and including the

semester S,

'ci' is the number of credits allotted to a particular subject, and

'gi' is the grade-points awarded to the student for the subject based on his/her performance as per the above table.

-CGPA will be rounded off to the second place of decimal and recorded as such.

Award of Degree of Honours Major Degree

The concept of Major and Minors at B.Tech level is introduced, to enhance learning skills of students, acquisition of additional knowledge in domains other than the discipline being pursued by the student, to make the students better employable with additional knowledge and encourage students to pursue cross-discipline research.

A. Eligibility Criteria for Majors

- 1. The Student should have Minimum CGPA of 7.5 up to 4th Semester
- 2. Student willing to opt for majors has to register at the beginning of 5th Semester

- 3. The Student has to complete 5 additional advanced courses from the same discipline specified in the curriculum. These five courses should be of 4 credits each amounting to 20 credits. The students should complete these credits before the end of last semester.
- Student may opt for the courses from NPTEL/ SWAYAM platform. (if the credits of NPTEL/ SWAYAM courses do not match with the existing subject proper scaling will be done)

Student complying with these criteria will be awarded B.Tech (Honours) Degree.

B. Eligibility Criteria for Minors

- 1. The Student should have Minimum CGPA of 7.5 up to 4th Semester
- 2. Student willing to opt for minors has to register at the beginning of 5^{th} Semester
- 3. The Student has to complete 5 additional courses from other discipline of their interest, which are specified in the respective discipline. These five courses should be of 4 credits each amounting to 20 credits.
- Student may opt for the courses from NPTEL/ SWAYAM platform. (if the credits of NPTEL/ SWAYAM courses do not match with the existing subject proper scaling will be done)

Student complying with these criteria will be awarded with B.Tech Degree in ------Engineering with Minor in --------Engineering.

(For e.g.: B. Tech in Civil Engineering with Minor in Computer Engineering)

For applying for Honours and Minor Degree the student has to register themselves through the proper system.

ATTENDANCE REQUIREMENTS:

- 1. All students must attend every lecture, tutorial and practical classes.
- 2. To account for approved leave of absence (eg. representing the Institute in sports, games or athletics; placement activities; NCC/NSS activities; etc.) and/or any other such contingencies like medical emergencies, etc., the attendance requirement shall be a minimum of 75% of the classes actually conducted.
- If the student failed to maintain 75% attendance, he/she will be detained for appearing the successive examination.
- The Dean (Academics)/ Principal is permitted to give 10% concession for the genuine reasons as such the case may be.
- In any case the student will not be permitted for appearing the examination if the attendance is less than 65%.
- 3. The course instructor handling a course must finalize the attendance 3 calendar days before the last day of classes in the current semester and communicate clearly to the students by displaying prominently in the department and also in report writing to the head of the department concerned.
- 4. The attendance records are to be maintained by the course instructor and he shall show it to the student, if and when required.

TRANSFER OF CREDITS

The courses credited elsewhere, in Indian or foreign University/Institutions/ Colleges/Swayam Courses by students during their study period at DBATU may count towards the credit requirements for the award of degree. The guidelines for such transfer of credits are as follows:

- a) 20 % of the total credit will be considered for respective calculations.
- b) Credits transferred will be considered for overall credits requirements of the programme.
- c) Credits transfer can be considered only for the course at same level i.e UG, PG etc.
- d) A student must provide all details (original or attested authentic copies) such as course contents, number of contact hours, course instructor /project guide and evaluation system for the course for which he is requesting a credits transfer. He shall also provide the approval or acceptance letter from the other side. These details will be evaluated by the concerned Board of Studies before giving approval. The Board of Studies will then decide the number of equivalent credits the student will get for such course(s) in DBATU. The complete details will then be forwarded to Dean for approval.
- e) A student has to get minimum passing grades/ marks for such courses for which the credits transfers are to be made.
- f) Credits transfers availed by a student shall be properly recorded on academic record(s) of the student.
- g) In exceptional cases, the students may opt for higher credits than the prescribed.

Abbreviations

BSC: Basic Science Course

ESC: Engineering Science Course

PCC: Professional Core Course

PEC: Professional Elective Course

OEC: Open Elective Course

HSSMC: Humanities and Social Science including Management Courses

PROJ: Project work, seminar and internship in industry or elsewhere

Basic Science Course (BSC)					
BTBS101	Engineering Mathematics- I	(3-1-0)4			
BTBS102					
B1BS102	Engineering Physics	(3-1-0)4			
BTBS107L	Engineering Physics Lab	(0-0-2)1			
BTBS201	Engineering Mathematics-II	(3-1-0)4			
BTBS202	Engineering Chemistry	(3-1-0)4			
BTBS207L	Engineering Chemistry Lab	(0-0-2)1			
BTBS301	Engineering Mathematics – III	(3-1-0)4			
Engi	ineering Science Course	(ESC)			
BTES103	Engineering Graphics	(2-0-0)2			
BTES105	Energy and Environment Engineering	(2-0-0)2			
BTES106	Basic Civil & Mechanical Engineering	(2-0-0)Audit			
BTES108L	Engineering Graphics Lab	(0-0-4)2			
BTES203	Engineering Mechanics	(2-1-0)3			
BTES204	Computer Programming	(3-0-0)3			
BTES205	Basic Electrical and Electronics Engineering	(2-0-0)Audit			
BTES206L	Workshop Practice	(0-0-4)2			
BTES208L	Engineering Mechanics Lab	(0-0-2)1			
BTMES304	Materials Science and Metallurgy	(3-1-0)4			
BTMES404	Strength of Materials	(3-1-0)4			
Online course	Artificial Intelligence*	(3-0-0)3			
Humanities and Social Science Including Management Courses (HSSMC)					
BTHM104	Communication Skills	(2-0-0)2			
BTHM109L	Communication Skills Lab	(0-0-2)1			
BTHM403					
BTHM702	Industrial				

Constitution of India [*] (1-0-0)1							
Professional Core Course (PCC)							
BTMC302 Fluid Mechanics (3-1-0)4							
BTMC303	Thermodynamics	(3-1-0)4					
BTMCL305	Machine Drawing and						
BTMCL306 Mechanical Engineering Lab - I		(0-0-4) 2					
BTMC401	Manufacturing Processes – I	(3-1-0)4					
BTMC402	Theory of Machines-I	(3-1-0)4					
BTMCL406	Mechanical Engineering Lab-II	(0-0-4) 2					
BTMC 501	Heat Transfer	(3-1-0)4					
BTMC 502	Machine Design – I	(3-1-0)4					
BTMC 503	Theory of Machines- II	(3-1-0)4					
BTMC506	Applied Thermodynamics	(3-1-0)4					
BTMCL 507	Mechanical Engineering Lab - III	(0-0-6) 3					
BTMC 601	Manufacturing Processes- II	(3-1-0)4					
BTMC 602	Machine Design-II	(3-1-0)4					
BTMCL 606	Mechanical Engineering Lab – IV	(0-0-6) 3					
BTMC701	Mechatronics	(3-1-0)4					
BTMCL706	Mechanical Engineering Lab –V	(0-0-6) 3					
Prof	essional Elective Course	(PEC)					
BTMPE405A	Numerical Methods in Engineering	(3-1-0) 4					
BTMPE405B	Sheet Metal Engineering	(3-1-0) 4					
BTMPE405C	Fluid Machinery	(3-1-0) 4					
BTMPE504A	Refrigeration and Air conditioning						
BTMPE504B	Turbines						
BTMPE504C	Engineering Tribology	(3-0-0)3					
BTAPE504A	Automobile Design	(3-0-0)3					
BTAPE504D	Automobile Engineering	(3-0-0)3					
BTMPE603A	IC Engines	(3-0-0)3					
BTMPE603B	Mechanical Vibrations	(3-0-0)3					

BTMPE603C	Machine Tool Design	(3-0-0)3	
BINIFEOUSC	Engineering	(3-0-0)3	
BTMPE603D	Metrology and Quality Control	(3-0-0)3	
BTAPE603D	Automobile Body Design (Pre-requisite: Automobile Design)	(3-0-0)3	
BTAPE603E	E – Vehicles	(3-0-0)3	
BTMPE604A	Process Equipment Design	(3-0-0)3	
BTMPE604B	Product Life Cycle Management	(3-0-0)3	
BTMPE604C	Finite Element Method	(3-0-0)3	
BTMPE604D	Robotics	(3-0-0)3	
BTAPE604B	Computational Fluid Dynamics	(3-0-0)3	
BTMPE703A	Design of Air Conditioning Systems	(3-0-0)3	
BTMPE703B	Biomechanics	(3-0-0)3	
ВТМРЕ703С	Non-conventional Machining	(3-0-0)3	
BTMPE703D	Advanced IC Engines	(3-0-0)3	
ВТМРЕ703Е	Additive Manufacturing	(3-0-0)3	
BTMPE703F	Surface Engineering	(3-0-0)3	
BTPPE703D	Processing of Polymers	(3-0-0)3	
	pen Elective Course (Ol	EC)	
BTMOE505A	Solar Energy	(3-0-0)3	
BTMOE505B	Renewable Energy Sources	(3-0-0)3	
BTMOE505C	Human Resource Management	(3-0-0)3	
BTMOE505D	Product Design Engineering	(3-0-0)3	
BTMOE605A	Quantitative Techniques and Project Management	(3-1-0) 4	
BTMOE605B	Nanotechnology	(3-1-0) 4	
BTMOE605C	Energy Conservation and Management	(3-1-0) 4	
BTMOE605D	Wind Energy	(3-1-0) 4	
BTMOE605E	Introduction to Probability Theory and Statistics	(3-1-0) 4	

BTMOE704A	Sustainable Development	(3-0-0)3				
BTMOE704B	Entrepreneurship Development	(3-0-0)3				
BTMOE704C	Plant Maintenance	(3-0-0)3				
BTMOE705A	Engineering Economics	(3-0-0)3				
BTMOE705B	Biology for Engineers	(3-0-0)3				
BTMOE705C	Intellectual Property Rights	(3-0-0)3				
Semi	nar/Mini Project/ Inte	ernship				
BTES20 <mark>9P</mark>	IT – 1 Evaluation	(0-0-0)1				
BTMI 40 <mark>7</mark>	IT – 2 Evaluation	(0-0-0) 1				
BTMS 60 <mark>7</mark>	B Tech Seminar	(0-0-2)1				
BTMP 60 <mark>8</mark>	Mini Project (TPCS)	(0-0-2)2				
BTMI60 <mark>9</mark>	BTMI609 IT – 3 Evaluation					
	Project (MP)					
BTAP801/ BTAI801	Project work/ Internship	(0-0-24)12				

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Course Structure for Semester V B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

	Semester V									
Course	Course Code Course Title		Teaching Scheme		Evaluation Scheme				No. of	
Category		L	T	P	CA	MSE	ESE	Total	Credits	
PCC 8	BTMC 501	Heat Transfer	3	1	-	20	20	60	100	4
PCC 9	BTMC 502	Machine Design – I	3	1	-	20	20	60	100	4
PCC 10	BTMC 503	Theory of Machines- II	3	1	-	20	20	60	100	4
PEC 2	BTMPE 504A-C BTAPE50 <mark>4</mark> A,D	Elective-II	3	-	-	20	20	60	100	3
OEC 1	BTMOE 505A-D	Open Elective-I	3	-	-	20	20	60	100	3
PCC 11	BTMC 506	Applied Thermodynamics	3		-	20	20	<mark>60</mark>	100	3
PCC12	BTMCL 50 <mark>7</mark>	Mechanical Engineering Lab – III	-	-	6	60	-	40	100	3
PROJ- <mark>3</mark>	BTMI 40 <mark>8</mark>	IT – 2 Evaluation	-	-	-	-	-	100	100	1
	Total 18 3 6 180 120 500 800 25						<mark>2</mark> 5			

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Elective II

Sr. No	Course code	Course Name
1	BTMPE504A	Refrigeration and Air conditioning
2	BTMPE504B	Steam and Gas Turbines
3	BTMPE504C	Engineering Tribology
4	BTAPE50 <mark>4</mark> A	Fundamentals of Automobile Design
5	BTAPE504D	Automobile Engineering

Open Elective I

Sr.No.	Course code	Course Name
1	BTMOE505A	Solar Energy
2	BTMOE505B	Renewable Energy Sources
3	BTMOE505C	Human Resource Management
4	BTMOE505D	Product Design Engineering

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Course Structure for Semester VI B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

		Semes	ter VI							
Course	Course Code	Course Title	Teaching Scheme			Evaluation Scheme				No. of
Category			L T P		P	CA MSE		ESE Total		Credits
PCC12	BTMC 601	Manufacturing Processes-II	3	1	-	20	20	60	100	4
PCC13	BTMC 602	Machine Design-II	3	1	-	20	20	60	100	4
PEC3	BTMPE 603A-C BTAPE 603C,E	Elective-III	3		-	20	20	60	100	3
PEC4	BTMPE 604A-D BTAPE 604B	Elective-IV	3		-	20	20	60	100	3
OEC2	BTMOE 605A-E	Open Elective-II	3	-	-	20	20	60	100	3
PCC14	BTMCL 606	Mechanical Engineering Lab – IV	-	-	6	60	-	40	100	3
PROJ-4	BTMS607	B Tech Seminar	-	-	2	<mark>60</mark>		<mark>40</mark>	100	1
PROJ- <mark>5</mark>	BTMP 608	Mini Project (TPCS)	-	-	2	60	-	40	100	1
PROJ- <mark>6</mark>	BTMI 60 <mark>9</mark> (IT-3)	Field Training / Industrial Training (minimum of 4 weeks which can be completed partially in fifth semester and sixth semester or in one semester itself).	-	-	-	-	-	-	-	Credits to be evaluated in Sem VII
	J	Total	15	2	10	280	100	420	800	2 2

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Elective III:

Sr.No	Course code	Course Name
1	BTMPE603A	IC Engines
2	BTMPE603B	Mechanical Vibrations
3	BTMPE603C	Machine Tool Design
4	BTMPE603D	Engineering Metrology and Quality Control
5	BTAPE603C	Advance Automobile Design
6	BTAPE603E	E – Vehicles

Elective IV:

SrNo	Course code	Course Name				
1	BTMPE604A	Process Equipment Design				
2	BTMPE604B	Product Life Cycle Management				
3	BTMPE604C	Finite Element Method				
4	BTMPE604D	Robotics				
5	BTAPE604B	Computational Fluid Dynamics				

Open Elective II:

Sr.No	Course code	Course Name				
1	BTMOE605A	Quantitative Techniques and Project Management				
2	BTMOE605B	Nanotechnology				
3	BTMOE605C	Energy Conservation and Management				
4	BTMOE605D	Wind Energy				
5	BTMOE605E	Introduction to Probability Theory and Statistics				

Semester - V

Heat Transfer

BTMC 501 PCC 8	Heat Transfer	3-1-0	4 Credits
----------------	---------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Explain the laws of heat transfer and deduce the general heat conduction equation and to explain it for 1-D steady state heat transfer in regular shape bodies
CO2	Describe the critical radius of insulation, overall heat transfer coefficient, thermal conductivity and lumped heat transfer
CO3	Interpret the extended surfaces
CO4	Illustrate the boundary layer concept, dimensional analysis, forced and free convection under different conditions
CO5	Describe the Boiling heat transfer, Evaluate the heat exchanger and examine the LMTD and NTU methods applied to engineering problems
CO6	Explain the thermal radiation black body, emissivity and reflectivity and evaluation of view factor and radiation shields

Course					Pı	ogram	Outco	mes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1			1				1			
CO2	3	2			1							
CO3	3	1			2		2		1			
CO4	3	3		1	1				1			
CO5	3	3	3		1		2					
CO6	2	3		2	2		2		1			

Course Contents:

Unit1: Introduction [07 Hours]

Heat transfer mechanism, conduction heat transfer, Thermal conductivity, Convection heat transfer, Radiation heat transfer, laws of heat transfer Steady State Conduction: General heat conduction equation, Boundary and initial Conditions, one dimensional steady state conduction: the slab, the cylinder, the sphere, composite systems.

Unit2: Overall Heat Transfer and Extended Surfaces

[07 Hours]

Thermal contact resistance, Critical radius of insulation, Electrical analogy, and Overall heat transfer coefficient, Heat sources systems, Variable thermal conductivity, extended surfaces. Unsteady State Con duction: Lumped system analysis, Biot and Fourier number, Heisler chart (Numerical examples).

Unit3: Principles of Convection

[07 Hours]

Continuity, Momentum and Energy equations, Hydro dynamic and Thermal boundary layer for aflat plate and pipe flow. Dimensionless groups force convection, relation between fluid friction and heat transfer, turbulent boundary layer heat transfer. Forced

Convection:

Empirical relations for pipe and tube flow, flow a cross cylinders, spheres, tube banks. Free Convection: Free convection from a vertical, inclined and horizontal surface, cylinder and sphere. (Numericalexamples).

Unit4: Heat Exchangers

[07 Hours]

Heat Exchangers: Classification of heat exchangers, temperature distribution in parallel counter flow arrangement, the overall heat transfer coefficient, Analysis of heat exchangers, the log mean temperature difference (LMTD) method, the effectiveness – NTU method, selection of heat exchangers, Introduction to TEMA standard. (Numerical examples).

Unit5: Radiation Heat Transfer

[07 Hours]

Introduction, thermal radiation, Black body

radiation, radiation laws, Radiation properties, Atmospheric and Solar radiation, The view factor Radiation heat transfer from black surfaces, gray surfaces, diffuses surfaces, Radiation shield sand the radiation effect. (Numerical examples).

Texts:

- 1. F. P. Incoropera, D. P.Dewitt, "FundamentalsofHeatandMassTransfer", John-Wiley, 5th edition, 1990.
- 2. S. P. Sukhatme, "A Text book On Heat Transfer", Tata McGraw-Hill Publications, 3rd edition.

References:

- 1. Y. A. Cengel, "Heat Transfer A Practical Approach", Tata McGraw HillPublications,3rdedition,2006.
- 2. J. P. Holman, "HeatTransfer", Tata McGraw Hill Publications,9th edition,2004.

Machine Design - I

BTMC 502	PCC 9	Machine Design - I	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Strength of Materials

Course Outcomes: At the end of the course, students will be able to:

CO1	Formulate the problem by identifying customer need and convert into design					
COI	Specification					
CO2	Understand component behavior subjected to loads and identify failure criteria					
CO3	Analyze the stresses and strain induced in the component					
CO4	Design of machine component using theories of failures					
CO5	Design of component for finite life and infinite life when subjected to fluctuating load					
CO6	Design of components like shaft, key, coupling, screw and spring					

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1						1				1

CO2	3	2		1	1	1	1	1
CO3	1	1			1	1	1	1
CO4	3	3	2	1	2	1	1	1
CO5	1	1			1	1	1	1
CO6	2	2	2	1	1	1	1	1

Course Contents:

Unit1:MechanicalEngineeringDesignProcess

[07 Hours]

Traditional design methods, general industrial design procedure, design considerations, phases in design, creativity in design, use of standardization, preferred series, introduction to ISO 9000, use of design data book, aesthetic and ergonomic considerations in design.

Unit2:DesignofMachineElementsagainstStaticLoading

[07 Hours] Theories

of Failure(Yield and Fracture

Criteria):

Maximum

normal stress theory, Maximum shear stress theory, Maximum distortion energy theory, comparisonof various theories of failure, Direct loading and combined loading, Joints subjected to static loadinge.g. cotter and knuckle joint.

Unit3: Design against Fluctuating Loads

[07 Hours]

Stress concentration, stress concentration factors, fluctuating stresses, fatigue failure, endurance limit, notch sensitivity, approximate estimation of endurance limit, design for finite life and finite life under reversed stresses, cumulative damage in fatigue, Soderberg and Goodman diagrams, fatigue design under combined stresses.

Unit4:Design of Shafts Keys and Couplings

[07 Hours] Various design

considerations in transmission shafts, splined shafts, spindle and axles strength, lateral and torsional rigidity, ASME code for designing transmission shaft.

Types of Keys: Classification and fitmentin key ways, Design of various types of keys.

Couplings: Design consideration, design of rigid, muff and flange type couplings, and design offlexible couplings.

Unit5: Design of Threaded Joints and Mechanical Springs

[07 Hours]

Power Screws: Forms of threads used for power screw and the it sapplications, torque analysis for square threads, efficiency of screw, overall efficiency, self- locking in power screws, stresses in the power screw, design of screw and nut, differential and compound screw, recirculating balls crew.

Welded Joints: Type of welded joints, stresses in butt and fillet welds, strength of welded jointssubjected to bending moments.

Mechanical Springs: Stress deflection equation for helical spring, Wahl's factor, style of ends, design of helical compression, shot peening.

Texts:

- 1. V. B. Bhandari, "Design of Machine Elements", TataMcGrawHill Publications, NewDelhi, 2008.
- 2. R. L.Nortan, "Machine Design: An Integrated Approach", Pearson Education Singapore, 2001.

- 1. R. C.Juvinall, K. M.Marshek, "Fundamentalofmachinecomponentdesign", John Wiley&SonsInc., NewYork, 3rdedition, 2002.
- 2. B. J. Hamrock, B. Jacobsonand Schmid Sr., "Fundamentals of Machine Elements", International Edition, New York, 2nd edition, 1999.
- 3. A. S.Hall, A. R.Holowenko, H. G.Langhlin, "TheoryandProblemsofMachine Design", Schaum's Outline Series, Tata McGrawHillbookCompany, New York, 1982.
- 4. J. E.ShigleyandC.Mischke, "MechanicalEngineeringDesign", Tata McGrawHill Publications,7thedition, 2004.
- 5. M. F.Spotts, "DesignofMachineElements", PrenticeHallofIndia, NewDelhi.

Theory of Machines - II

BTMC 503	PCC 10	Theory of Machines - II	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Engineering Mechanics, TOM - I

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify and select type of belt drive for a particular application
CO2	Evaluate gear tooth geometry and select appropriate gears, gear trains
CO3	Characterize flywheels as per application requirement
CO4	Understand gyroscopic effects in ships, aeroplanes, and road vehicles.
CO5	Understand free and forced vibrations of single degree freedom systems

Mapping of course outcomes with program outcomes

Course		Program Outcomes												
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	3	1		2		1			2		2		
CO2	2	3					1					3		
CO3		2		1										
CO4	2	3		2								3		
CO5	2	3		3								3		

Course Contents:

[07 Hours] **Unit 1: Belt Drives**

Flat belts: Effect of slip, Creep, crowing of pulley, Length of belt, Centrifugal tension, Initial tension in belts, ratio belt tensions, power transmitted.

V- Belts: Advantages of V-Belts over Flat Belt, ratio of belt tensions, torque transmitted.

Unit 2: Toothed Gears [07 Hours]

Classification of gears, Terminology of spur gears, Conjugate action, Involute and cycloidal profiles, Path of conta Arc of contact, Contact ratio, Interference, Undercutting, Backlash. Introduction to Internal gears.

Helical gear terminology, Normal and transverse module, Virtual number of teeth.

Unit 3: Worm & Bevel Gear & Gear Trains

[07 Hours]

Introduction & terminology of Worm gears & Bevel gear, concept of virtual number of teeth in bevel gear, Efficien of worm gear.

Types of gear trains, Simple, Compound & Reverted Gear Trains, their Velocity ratios, Simple Epicyclic Gear Trains its Velocity Ratios.

Unit 4: Flywheel and Gyroscope

[07 Hours]

Flywheel: Turning moment diagram, Energy stored in the flywheel, Fluctuation of energy and speed, Determination mass of flywheel for four stroke single cylinder IC Engine & simple Punching Press.

Gyroscope: Principles of gyroscopic action, Precession and gyroscopic acceleration, gyroscopic couple, Effect of gyroscopic couple on Aeroplane, Naval ships and four wheelers.

Unit 5: Vibration [07 Hours]

Mechanical Vibration: Basic concepts and definitions of Vibration, Single degree of freedom system, Undamped f vibrations, Natural frequency of Longitudinal & transverse vibrations of shaft with point loads (neglecting inert Introduction to damped free vibrations & equation of motion, Types of damping. Critical or whirling Speed of shaft undamped system. Introduction to forced vibrations

Torsional Vibrations: Natural frequency & modes of single and two rotor system.

Texts:

- 1. S. S. Rattan, "Theory of Machines," Tata McGraw Hill Publications, New Delhi.
- Thomas Beven, "Theory of machines," CBS Publishers, Delhi, 1984.
 Kelly, Graham S., "Mechanical Vibrations," Schaum's Outline Series, McGraw Hill, New York, 1996.
- 4. Rao, J.S., "Introductory Course on Theory and Practice of Mechanical Vibration", New age International (P) L New Delhi, 2nd edition, 1999.

- $1. \ \ Rao\ Singiresu, "Mechanical\ Vibrations", Pearson\ Education, New\ Delhi, 4^{th}\ edition\ 2004.$
- 2. J. E. Shigley, J. J. Vicker, "Theory of Machines and Mechanisms", Tata McGraw Hill International.

Refrigeration and Air Conditioning

BTMPE504A PEC 2 Refrigeration and Air Conditioning	3-0-0	3 Credits
--	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Unit 1: Air Refrgeration System

[07 Hours]

Introduction, standard rating of refrigerating machine, coefficient of performance of refrigerator and heat pump., Reversed Carnot cycle and its limitations, reversed Brayton cycle, application to air craft refrigeration. Bootstrap refrigeration cycle, reduced ambient air cooling system, Regenerative air cycle system

Designation of refrigerant, selection of refrigerant, Desirable Properties, Primary and secondary refrigerants, azeotropes and its uses

Unit 2: Vapour Compression System

[07 Hours]

Thermodynamics analysis, theoretical and actual cycle, Use of P-h and T-s diagram for problem solving, COP, Effect of evaporator and condenser temperature on cycle performance, Effects of suction superheating

Liquid sub-cooling, liquid-vapour heat exchanger, estimation of compressor displacement, COP and power requirement, waste heat recover opportunities

Unit 3: Compound Vapour Compression System

[07 Hours]

Multi-evaporator, multi-compressor systems, cascade system

Vapour Absorption System: Aqua-ammonia system, lithium bromide-water system, Electrolux refrigerator, comparison with vapour compression cycle (descriptive treatment only), use of enthalpy concentration, thermodynamic analysis, and capacity control, solar refrigeration system

Unit 4: Air Conditioning:

[07 Hours]

Psychrometry, properties of moist air, Psychometric charts. Psychomeric processes, bypass factor Sensible and latent heat loads, SHF, GSHF, RSHF, All air system, all water system, unitary systems; window air-conditioner, split air-conditioners, refrigeration and air-conditioning controls

Unit 5: Air Conditioning Process Calculation

[07 Hours]

Introduction to comfort air conditioning ,human comfort and comfort chart, Load calculation, outside conditions, indoor conditions, estimation of coil capacity required, evaporative cooling Principle of air distribution, duct design methods, friction chart, duct materials, methods of noise control

Texts:

1. Arora, C.P., Refrigeration and Air Conditioning, Tata McGraw Hills, New Delhi, Second Edition, 2000.

2. Stoeker, W.F. and Jones, J.P., Principles of Refrigeration and Air Conditioning, McGraw Hill, New York, Second Edition, 1982.

- 1. ASHRAE Handbook Fundamentals and Equipment, 1993.
- **2.** ASHRAE Handbook Applications, 1961.
- 3. ISHRAE Handbook
- 4. NPTEL Lectures by Prof. RamGopal, IIT Kharagpur
- **5.** Carriern Handbook
- **6.** Jord R.C., and Priester, G.B., Refrigeration and Air Conditioning, Prentice Hall of India Ltd., New Delhi, 1969.
- 7. Threlkeld, J.L., Thermal Environmental Engineering, Prentice Hall, New York, 1970.

Steam and Gas Turbine

BTMPE504B	PEC 2	Steam and Gas Turbine	3-0-0	3 Credits
-----------	-------	-----------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	State Various properties of Steam, Draw P-V, T-s, H-s (Mollier) diagrams for steam, Describe Theoretical steam turbine cycle.
CO2	Define and Understand Various Types of Design of Turbines.
CO3	Perform analysis of given steam and gas Turbine power plant (Efficiencies, Power Output, Performance)
CO4	Study and apply various Performance improvement Techniques in steam and gas Turbines
CO5	Assess factors influencing performance of thermal power plants,
CO6	Apply various maintenance procedures and trouble shootings to Turbines.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1										
CO2	1	1										
CO3		2			2							
CO4	1				1	2	2					
CO5	1	2										
CO6	1	1		3								

Course Contents:

Unit 1: Introduction [07 Hours]

Properties of steam, Theoretical steam turbine cycle. The flow of steam through Impulse and Impulse–Reaction turbine blades

Unit 2: [07 Hours]

Vortex flow in steam turbines, Energy lines, State point locus, Reheat factor and Design procedure. Governing and performance of steam turbine

Unit 3: Gas Turbine [07 Hours]

Introduction, simple open cycle gas turbine, Actual Brayton cycle, Means of Improving the

efficiency and the specific output of simple cycle,

Unit 4: Gas Turbine Cycle Modifications and Performance

[07 Hours]

Regeneration, Reheat, Intercooling, closed-cycle gas turbine, turbine velocity diagram and work done.

Unit 5: Turbine Cooling and maintenance

[07 Hours]

Turbine blade cooling, material, protective coating, Performance of turbine, Application of turbine. Lubrication, cooling, fuel supply and control, Maintenance and trouble shooting.

Texts:

1. W. J. Kearton, "Steam Turbine Theory and Practice", ELBS.

References:

1. R. Yadav, "Steam and Gas Turbine", Central Publishing Home, Allahabad. Jack D. Mattingly, "Elements of Gas Turbine propulsion", Tata McGraw Hill Publications.

Engineering Tribology

BTMPE504C	PEC2	Engineering Tribology	3-0-0	Credits
-----------	------	-----------------------	-------	---------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the basic concepts and importance of tribology.				
CO2 Evaluate the nature of engineering surfaces, their topography and surface					
002	characterization techniques				
CO3	Analyze the basic theories of friction and frictional behavior of various materials				
CO4	Select a suitable lubricant for a specific application				
CO5	CO5 Compare different wear mechanisms				
CO6	CO6 Suggest suitable material combination for tribological design.				

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	1	2	2		1						
CO3	2	3	1	2	1	1	1					
CO4	2	2	2		1	1	2		1		1	
CO5	1	1	1	1	1							
CO6	2	2	2		2	2	2		1	1	1	

Course Contents:

Unit1: Introduction [07 Hours]

Definition of tribology, friction, wear and lubrication; importance of the tri-bological tudies. Surface Topography: Methods of assessment, measurement of surface roughness-different statistical parameters (Ra, Rz, Rmax,etc.), contact between surfaces, deformation between single and multiple asperity contact, contact theories involved

Unit2: Friction [07 Hours]

Coulomb laws of friction, its applicability and limitations, comparison between static, rollingand kinetic friction, friction theories, mechanical interlocking, molecular attraction, electrostatic forces and welding, shearing and ploughing, models for asperity deformation.

Unit3: Lubrication [07 Hours]

Types of lubrication, viscosity, characteristics of fluids lubricant, hydrodynamic lubrication, Reynold's equation, elasto-hydrodynamic lubrication: partial and mixed, boundary lubrication, various additives solid lubrication.

Unit4: Wear [07 Hours]

Sliding wear: Abrasion, adhesion and galling, testing method spin-on-disc, block-onring, etc. theory of sliding wear, un-lubricated wear of metals, lubricated wear of metals, fretting wear of metals, wear of ceramics and polymers.

Wearing by plastic deformation and brittle fracture. Wear by hard particles: Two-body abrasive wear, three-body abrasive wear, erosion, effects of hardness shape and size of particles.

Unit5: Wear and Design and Materials for Bearings

[07 Hours]

Introduction, estimation of wear rates, the systems approach, reducing ear by changingthe operating variables effect of lubrication on sliding wear, selection of materials and surface engineering. Principles and application of tribo design

Materials for Bearings

Introduction, rolling bearings, Fluid film lubricated bearings, marginally lubricated and dry bearings, gas bearings.

Texts:

- 1. I. M. Hutchings, "Tribology, Friction and Wear Engineering Materials", Edward Arnold, London.
- 2. R. C. Gunther, "Lubrication", Baily Brother sand Swinfen Limited.
- 3. F. T. Barwell, "Bearing Systems, Principles and Practice", Oxford University Press.

- 1. B. C. Majumdar, "Introduction to Tribology of Bearings", A. H. Wheeler & Co. Private Limited, Allahabad.
- 2. D. F. Dudley, "Theory and Practice of Lubrication for Engineers", John Willey and Sons.
- 3. J. Halling, "Principles of Tribology", Mc Millan Press Limited.
- 4. Cameron Alas Tair, "Basic Lubrication Theory", Wiley Eastern Limited.
- 5. M. J. Neale, "Tribology Handbook", Butterworth's.
- 6. D. D. Fuller, "Lubrication".

Fundamentals of Automobile Design

BTAPE504A	Automobile Design (Product Design, PLM, CAE, Catia)	PEC 2	3L-0T-0P	3 Credits
-----------	---	-------	----------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify the different parts of the automobile.
CO2	Explain the working of various parts like engine, transmission, clutch, brakes etc.,
CO3	Demonstrate various types of drive systems.
CO4	Apply vehicle troubleshooting and maintenance procedures.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1										
CO2	1	2		2		1						
CO3	1	1		1	1							
CO4	2			3	1							

Course Contents:

Domain related training (Approx. 20 Hrs)

Unit 1: [07 Hours]

Introduction to Styling, Basic of Design - Introduction to Design, Good Design & it's Examples of All Time, Industrial Design & its use. Design Process - Typical Product Life Cycle, Automotive Design Process (for production release), Design Studio (Automotive studio) Process or Product Conceptualization Process, Case Study. CAS Surfaces or Digital Clay Models, Class A Surfaces - Role of Class A surface Engineer, Requirements for a Surface to fulfill "Class A Surface" Standards, Case Studies for Class A Surfaces, Class A Surface Creation for Bonnet

Unit 2: [07 Hours]

Introduction to Body In White: Introduction & familiarization to Body In White (BIW), various type of BIW, Types of BIW sub system, various aggregates of BIW. Bonnet Design Case Study: Function of Bonnet, Defined Input to Bonnet, Intended Input to Bonnet Design. Steps in Bonnet design, Study of Class A Surfaces, Hood Package Layout, Typical Sections, Block Surfaces in 3D, Dynamic Clearance Surfaces in 3D, Hood Structural Members, CAE 1(Durability, Crash), Panel Detail Design, Body Assembly Process, CAE 2(Durability, crash,

individual panel level), Design Updating & Detailing Prototypes, Design Updating & Production Release

Unit 3: [07 Hours]

Introduction to CAE & its importance in the PLM, Introduction to FEA & its applications (NVH, Durability & Vehicle Crashworthiness). Introduction of Pre-Processor, Post-Processor & Solvers. Importance of discretization & Stiffness Matrix (for automobile components). Importance of oil canning on an automobile hood with Case study related to Durability Domain. Modal analysis on the hood (Case Study related to NVH Domain). Introduction of vehicle crashworthiness & Biomechanics (Newtonian laws, energy management, emphasis of impulse in car crashes). Head impact analysis as a Case study on the hood of an automobile (Eurocamp test regulation). Importance of Head performance criteria (HPC). Introduction to failure criteria (By explaining the analogy of using uni-axial test results for predicting tri-axial results in reality), Mohr's Circle, Von-Mises stress criteria, application of various failure criteria on brittle or ductile materials

Unit 4: [07 Hours]

Introduction to CAD, CAM& CAE, FEA - Definition, Various Domains – NVH, Dura, Crash, Occupant Safety, CFD. Implicit vs. Explicit Solvers, Degree of Freedom, Stiffness Matrix, Pre-Post & Solver; Types of solvers, Animation. Durability -Oil Canning, Oil Canning on Hood, Scope of work, Loading, Boundary Conditions, Results & Conclusions. NVH – Constrained Modal Analysis, Constrained Modal Analysis on Hood, Scope of work, Loading, Boundary Conditions, Results & Conclusions. Crash – Vehicle Crashworthiness, Energy Management, Biomechanics, Head Impact Analysis on Hood, Importance of Failure Criteria, Von-Mises Stress

Unit 5: [07 Hours]

Sheet metal design & Manufacturing Cycle, Simultaneous Engineering (SE) feasibility study, Auto Body & its parts, important constituents of an automobile, sheet metal, sheet metal processes. Type of draw dies, Draw Model development & its considerations. Forming Simulations, Material Properties, Forming Limit Curve (FLD), Pre-Processing, Post-Processing, Sheet metal formability- Simulation

Die Design –Sheet metal parts, Sheet metal operations (Cutting, Non-Cutting etc.), Presses, Various elements used in die design, Function of each element with pictures, Types of dies, Animation describing the working of dies, Real life examples of die design. **Fixture Design** - Welding (Spot/Arc Welding), Body Coordinates, 3-2-1 principle, Need for fixture, Design considerations, Use of product GD&T in the fixture design, fixture elements. Typical operations in Sheet metal Fixture (Manual/Pneumatic/Hydraulic fixture), Typical unit design for sheet metal parts (Rest/Clamp/Location/Slide/Dump units/Base), Types of fixture (Spot welding/ Arc welding/ Inspection fixture/Gauges)

Tools related training (Approx. 20 Hrs):

Depending on the tools available in the college, the relevant tool related training modules shall be enabled to the students.

AutoCAD, AutoCAD Electrical, AutoCAD Mechanical, AutoCAD P&ID, Autodesk 3ds Max, Autodesk Alias, Autodesk Sketch Book, Automotive, CATIA V5, CATIA V6, FEA, Autodesk Fusion 360, Autodesk Inventor, Autodesk Navisworks, Autodesk Ravit, Autodesk

Showcase, Autodesk Simulation, PTC Creo, PTC Pro ENGINEER, Solid Edge, SOLIDWORKS.

Texts:

- 1. Notes of TATA Technologies
- 2. Curt Larson, "Datum Principles: Flexible Parts: Applications for Automotive Body-in-White and Interior Trim (Dimensional Management Series Book 1)", Right Tech, Inc., Kindle Edition.
- 3. Curt Larson, "Datum Principles: Flexible Parts: Applications for Automotive Body-in-White and Interior Trim (Dimensional Management Series Book 2)", Right Tech, Inc., Kindle Edition.
- 4. Vukato Boljanovic, "Sheet Metal Forming Processes and Die Design", Industrial press Inc., Kindle Edition.

- 1. Ibrahim Zeid, "CAD/CAM Theoryand Practice", Tata McGraw-Hill Publication,
- 2. Mikell P. Grover "Automation, Production Systems and Computer-Integrated Manufacturing", Pearson Education, New Delhi.
- 3. P. Radhakrishnan & S. Subramanyan "CAD/CAM/CIM" Willey Eastern Limited New Delhi.
- 4. On wubiko, C., "Foundation of Computer Aided Design", West Publishing Company.1989
- 5. R.W. Heine, C. R. Loper and P.C.Rosenthal, *Principles of Metal Casting*, McGraw Hill, Newyork, 1976.
- 6. J. H. Dubois And W. I. Pribble, *Plastics Mold Engineering Handbook*, Van Nostrand Reihnhold, New York, 1987.
- 7. N. K. Mehta, Machine tool design, Tata McGraw-Hill, New Delhi, 1989.
- 8. Geoffrey Boothroyd, Peter Dewhurst and Winston Knight, Product Design for Manufacturing and Assembly, 2nd Edition
- 9. C. Howard, *Modern Welding Technology*, Prentice Hall, 1979.
- 10. Grieves, Michael, Product Lifecycle Management, McGraw-Hill, 2006. ISBN 0071452303
- 11. Stark, John. Product Lifecycle Management: Paradigm for 21st Century Product Realization, Springer Verlag, 2004. ISBN 1852338105

Automobile Engineering

BTAPE504D	PEC2	Automobile Engineering	3-0-0	
-----------	------	------------------------	-------	--

Teaching Scheme	Examination Scheme
Lecture: 3 Hrs/week	Continuous Assessment: 20 Marks
	Mid semester examination: 20 Marks
	End Semester Exam: 60 Marks (3 hrs
	duration)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify the different parts of the automobile.
-----	---

CO2	Explain the working of various parts like engine, transmission, clutch, brakes etc.,
CO3	Demonstrate various types of drive systems; front and rear wheels, two and four whee
drive	
CO4	Apply vehicle troubleshooting and maintenance procedures.
CO5	Analyze the environmental implications of automobile emissions. And suggest suitable
- CO3	regulatory modifications.

Mapping of course outcomes with program outcomes

CourseOu		Program Outcomes										
tcomesC	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8 :	PO9	PO10PC	11PO	12
01	2	1										
CO2	1	2		2		1						
CO3	1	1		1	1							
CO4	2			3	1							
CO5		2			1	1	2					
CO6	1		2			2						

Course Contents:

Unit1: Introduction

Vehicle specifications, Classifications, Chassis layout, Frame, Main components of automobile and articulated vehicles; Engine cylinder arrangements, Power requirements, Tractive efforts and vehicle performance curves.

Unit2: Steering and Suspension Systems

Steering system; Principle of steering, Centre point steering, Steering linkages, Steering geometry and wheel alignment, power steering.

Suspension system: its need and types, Independent suspension, coil and leaf springs, Suspension systems for multivale vehicles, troubleshooting and remedies.

Unit3: Transmission System

Clutch: its need and types, Gearboxes: Types of gear transmission, Shift mechanisms, Over running clutch, Fluid coupling and torque converters, Transmission universal joint, Propeller shaft, Front and rear axles types, Stub axles, Differential and its types, Four wheel drive.

Unit4: Brakes, Wheels and Tyres

Brake: its need and types: Mechanical, hydraulic and pneumatic brakes, Disc and drum type: their relative merits, Brake adjustments and defects, Power brakes

Wheels and Tyres: their types; Tyre construction and specification; Tyre wear and causes; Wheel balancing.

Unit5: Electrical Systems

Construction, operation and maintenance of lead acid batteries, Battery charging system, Principle and operation of cutout and regulators, Starter motor, Bendix drive, Solenoid drive, Magneto-coil and solid stage ignition systems, Ignition timing.

Vehicle Testing and Maintenance

Need of vehicle testing, Vehicle test standards, Different vehicle tests, Maintenance: trouble shooting and service procedure, over hauling, Engine tune up, Tools and equipment for repair and overhauling, Pollution due to vehicle emissions, Emission control system and regulations.

Texts:

- 1. Kripal Singh, "Automobile Engineering", Vol.I and II, Standard Publishers.
- 2. G.B.S.Narang, "Automobile Engineering", Dhanpat Rai and Sons.

- 1. Joseph Heitner, "Automotive Mechanics", East-West Press.
- 2. W.H.Crouse, "Automobile Mechanics", Tata McGraw Hill Publishing Co.

Open Elective-I

Solar Energy

BTMOE505A	OEC1	Solar Energy	3-0-0	3 credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Describe measurement of direct, diffuse and global solar radiations falling on horizontal and inclined surfaces.
CO2	Analyze the performance of flat plate collector, air heater and concentrating type collector.
CO3	Understand test procedures and apply these while testing different types of collectors.
CO4	Study and compare various types of thermal energy storage systems.
CO5	Analyze payback period and annual solar savings due to replacement of conventional systems.
CO6	Design solar water heating system for a few domestic and commercial applications.

Mapping of course outcomes with program outcomes

11 8												
Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1											
CO2	1	2				1						
CO3	2			1	1		2					
CO4	1	1										
CO5		2			1							
CO6			2	3		1	1					

Course Contents

Unit 1: Solar Radiation

[07 Hours]

Introduction, spectral distribution, solar time, diffuse radiation, Radiation on inclined surfaces, measurement of diffuse, global and direct solar radiation.

Unit 2: Liquid Flat Plate Collectors

[07 Hours]

Introduction, performance analysis, overall loss coefficient and heat transfer correlations, collect or efficiency factor, collect or heat removal factor, testing procedures.

Unit 3: Solar Air Heaters

[07 Hours]

Introduction, types of air heater, testing procedure.

Unit 4: Concentrating Collectors

[07 Hours]

Types of concentrating collectors, performance analysis

Unit 5: Thermal Energy Storage and Economic Analysis

[07 Hours]

Introduction, sensible heat storage, latent heat storage and thermo chemical storage **Solar Pond:** Solar pond concepts, description, performance analysis, operational problems. **Economic Analysis**

Definitions, annular solar savings, payback period.

Texts:

- 1. J. A. Duffie, W. A. Beckman, "Solar Energy Thermal Processes", John Wiley, 1974.
- 2. K. Kreith, J. F. Kreider, "Principles of Solar Engineering", Tata McGraw-Hill Publications, 1978.

- 1. H. P. Garg, J. Prakash, "Solar Energy: Fundamentals and Applications", Tata McGraw Hill Publications, 1997.
- 2. S. P. Sukhatme, "Solar Energy Principles of Thermal Collection and Storage", Tata McGraw Hill Publications, 1996.

Renewable Energy Sources

BTMOE505B OEC1	Renewable Energy Sources	3-0-0	Credits
----------------	--------------------------	-------	---------

Teaching Scheme:	Examination Scheme:						
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks						
	Mid Semester Exam: 20 Marks						
	End Semester Exam: 60 Marks (Duration 03 hrs)						

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Explain the difference between renewable and non-renewable energy
CO2	Describe working of solar collectors
CO3	Explain various applications of solar energy
CO4	Describe working of other renewable energies such as wind, biomass, nuclear

Mapping of course outcomes with program outcomes

			<u> </u>				1 0	<u>, </u>				
Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3		2	3	3	3	2	2		2
CO2	1	1	3	1	2	3	3	3	2	2		2
CO3	2	1	1				3	2		1		2
CO4	3	3			2	3	3	2				1

Course Contents:

Unit 1: Solar Energy

[07 Hours]

Energy resources, Estimation of energy reserves in India, Current status of energy conversion Spectral distribution, Solar geometry, Attenuation of solar radiation in Earth's atmosphere, Measurement of solar radiation, Properties of opaque and transparent surfaces.

Unit 2: Solar Collectors

[07 Hours]

Flat Plate Solar Collectors: Construction of collector, material, selection criteria for flat plate collectors, testing of collectors, Limitation of flat plate collectors, Introduction to ETC.

Concentrating type collectors: Types of concentrators, advantages, paraboloid, parabolic trough, Heliostat concentrator, Selection of various materials used in concentrating systems, tracking.

Unit 3: Solar Energy Applications

[07 Hours]

Air/Water heating, Space heating/cooling, solar drying, and solar still, Photo-voltaic conversion.

Unit 4: Wind Energy and Biomass

Introduction to wind energy, Types of wind mills, Wind power availability, and wind power development in India. Evaluation of sites for bio-conversion and Introduction to biomass resources, Location of plants, Biomass conversion process,

Unit 5: Other Renewable Energy Sources

[07 Hours]

Tidal, Geo-thermal, OTEC, hydro-electric, Nuclear energy

Texts:

1. Chetan singh Solanki, "Renewable Energy Technologies", Prentice Hallo India, 2008.

- 1. S. P. Sukhatme, "Solar Energy: Principles of Thermal Collection and Storage", Tata McGraw-HillPublications, NewDelhi, 1992.
- 2. G. D.Rai, "SolarEnergyUtilization", KhannaPublisher, Delhi, 1992.

Human Resource Management

BTMOE505C OEC	C1 Human Reso	urce Management	3-0-0	3 Credits
---------------	---------------	-----------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Describe trends in the labor force composition and how they impact human resource
	management practice.
CO2	Discuss how to strategically plan for the human resources needed to meet
CO2	organizational goals and objectives.
CO3	Define the process of job analysis and discuss its importance as a foundation for human
CO3	resource management practice
CO4	Explain how legislation impacts human resource management practice.
CO5	Compare and contrast methods used for selection and placement of human resources.
CO6	Describe the steps required to develop and evaluate an employee training program
CO7	Summarize the activities involved in evaluating and managing employee performance.
CO8	Identify and explain the issues involved in establishing compensation systems.

Mapping of course outcomes with program outcomes

Course	Progr	Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					2						1	
CO2											3	
CO3										2		
CO4								2		2		
CO5									2	3		
CO6										1		3
CO7										2	2	
CO8											2	

Course Contents:

Unit1: Introduction to Human Resource management

[07 Hours]

Concept of management, concept of human resource management, personnel to humanresource management, human resource management model, important environmentalinfluences like government regulations, policies, labor laws and other legislation. Acquisition of humanresources: Human resource planning, Demand for man power, Weaknesses of man power planningg, job analysis, job specification, recruitment sources, recruitment advertising, the selection process, selection devices, equal opportunities: Indian and foreign practices, socializing the new employee

Unit2: Development of Human resources

[07 Hours]

Employee Training and Management Development: Training, Training and Learning Identification of training needs, training methods, Manager Development, Methods for developing managers, evaluating training effectiveness

Career Development: Concept of career, value of effective career development, external versus internal dimensions to a career, career stages, linking career dimensions with stages

Unit3: Motivation of Human resources

[07 Hours]

Definition of motivation, Characteristics of Motivation, The and ories of motivation: a slow's Need Hierarchy Theory, Drucker Theory, Likert Theory, Herzberg Two Factortheory, Mc Clell and Theory, McGregor

Theory X and Y, etc., Psychological approach. Job Design and Work Scheduling: Design, Scheduling and Expectancy Theory, Jobcharacteristics model, jobenrichment, job rotation, work modules, flex-time, new trends in work scheduling.

Unit4: Performance appraisal

[07 Hours]

Performance appraisal and expect ancy theory; appraisal process, appraisal methods, factors that can destroy appraisal. Rewarding the Productive Employee: Rewards and expectancy theory, types of rewards, qualities of effective rewards, criterions for rewards.

Unit5:Maintenanceof Human resources and Labor Relations

[07 Hours]

Compensation Administration: Concept of Compensation Administration, Job evaluation, Paystructures, Incentives compensation plans. Benefits and Services Benefits: Something for everybody, Services, Trends in benefits and services .Discipline:ConceptofDiscipline,typesofdisciplineproblems,generalguidelines, disciplinary action, employment-at-will doctrine, disciplining special employee groups Safety and Health:safety programs, health programs, stress, turn out.

Unions, Major labor legislation, goals of group representation. Collective Bargaining: objectives , scope, participants of collective bargaining, process of collective bargaining, collective bargaining Research and the future: What is research? Types of research, hyre searching human resource management, Secondary sources:

where to look it up, Primary sources: relevant research methods, current trends and implications for humanresource management.

Texts:

- 1. David A. De Cenzo, StephenP. Robbins, "Personnel/Human Resources Management", Prentice Halof India Pvt. Ltd,3rd edition,2002.
- 2. Trevor Bolton, "An Introduction to Human Resource Management", Infinity Books, 2001.

References:

1. Ellen E. Kossek, "Human Resource

Management-

TransformingtheWorkplace",InfinityBooks,2001.

- 2. G.S. Batra, R.C. Dangwal, "Human Resource Management New Strategies", DeepandDeepPublicationsPvt.Ltd.,2001.
- 3. D.M. Silvera, "HRD: TheIndianExperience", NewIndiaPublications, 2nd edition, 1990.

Product Design Engineering

BTMOE505D OEC1	Product Design Engineering – I	3-0-0	3 Credits
----------------	--------------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3hr/Week	Continuous Assessment: 20
	MarksMid Semester Exam: 20
	Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-requisites: Knowledge of Basic Sciences, Mathematics and Engineering Drawing

Course Outcomes: At the end of the course, students will be able to

- CO 01. Understand the need for product design
- CO 02. Apply various methods of idea generation
- CO 03. Understand various types of prototypes and testing methods
- CO 04. Understand the product economics at production scale
- CO 05. Appreciate the environmental concerns in product lifecycle

Course Contents:

Unit 1: Introduction to Engineering Product Design

[07 Hours]

Trigger for Product/Process/System, Problem solving approach for Product Design, Disassembling existing product(and understanding relationship of components with each other, identifying materials and their processing for final product, fitting of components, understanding manufacturing as scale of the components, Reverse engineering conce

Unit 2: Ideation & Conceptualization

[07 Hours]

Generation of ideas, funneling of ideas, Short-listing of ideas for product(s) as an individual or group of individual Market research for need, competitions, Product architecture, Designing of components, Drawing of parts a synthesis of a product from its component parts, 3-D visualization,

Unit 3: Testing and Evaluation Prototyping:

Design Automation, Prototype testing and evaluation, Working in multidisciplinary teams, Feedback to design processes, Process safety and materials, Health and hazard of process operations.

Unit 4: Manufacturing

[07 Hours]

Design models and digital tools, Decision models, Prepare documents for manufacturing in standard format, Materiand safety data sheet, Final Product specifications sheet, Detail Engineering Drawings (CAD/CAM programmin Manufacturing for scale, Design/identification of manufacturing processes

Unit 5: Environmental Concerns

[07 Hours]

Product life-cycle management, Recycling and reuse of products, Disposal of product and waste. Case studies.

Reference:

1. Model Curriculum for "Product Design Engineer – Mechanical", NASSCOM (Ref. ID: SSC/Q4201, Version 1.0, NSQF Level: 7)

- 2. Eppinger, S., & Ulrich, K.(2015). Product design and development. McGraw-Hill Higher Education.
- 3. Green, W., & Jordan, P. W. (Eds.).(1999). Human factors in product design: current practice and future trends. CRC Press.
- 4. Sanders, M. S., & McCormick, E. J. (1993). Human factors in engineering and design. McGRAW-HILLbookcompan
- 5. Roozenburg, N. F., & Eekels, J. (1995). Product design: fundamentals and methods (Vol. 2). John Wiley & Sons Inc.
- 6. Lidwell, W., Holden, K., & Butler, J.(2010). Universal principles of designs, revised and updated: 125 ways to enhant usability, influence perception, increase appeal, make better design decisions, and teach through design. Rockport Pu

Applied Thermodynamics

BTMC506	PCC11	Applied Thermodynamics	3-0-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Define the terms like calorific value of fuel, stoichiometric air-fuel ratio, excess air, equivalent evaporation, boiler efficiency, etc. Calculate minimum air required for combustion of fuel.
CO2	Studied and Analyze gas power cycles and vapour power cycles and derive expressions for the performance parameters like thermal efficiency.
CO3	Classify various types of boilers, nozzle, steam turbine and condenser used in steam power plant.
CO4	Classify various types condenser, nozzle and derived equations for its efficiency.
CO5	Draw P-v diagram for single-stage reciprocating air compressor, with and without clearance volume, and evaluate its performance. Differentiate between reciprocating androtary air compressors.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1										
CO2	1	2										
CO3	1											
CO4			1									
CO5		2										

Course Contents:

Unit 1: Fuels and Combustion

[07 Hours]

Types of fuels, calorific values of fuel and its determination, combustion equation for hydrocarbon fuel, determination of minimum air required for combustion and excess air supplied conversion of volumetric analysis to mass analysis, fuel gas analysis.

Unit 2: Steam Generators

[07 Hours]

Classification of boilers, boiler details, requirements of a good boiler; merits and demerits of fire

tube and water tube boilers, boiler mountings and accessories. **Boiler Draught:** Classification of draught, natural draught, efficiency of the chimney, draught

losses, types of boiler draught.

Performance of Boilers: Evaporation, equipment evaporation, boiler efficiency, boiler trial and heat balance, Introduction to IBR.

Unit 3: Vapor and Gas Power Cycles, Steam Nozzles

[07 Hours]

Ideal Rankine cycle, Reheat and Regeneration, Stirling cycle, Joule-Brayton cycle. Calculation of thermal efficiency, specific steam/fuel consumption, work ratio for above cycles.

Steam Nozzles: Types of Nozzles, flow of steam through nozzles, condition for maximum discharge, expansion of steam considering friction, super saturated flow through nozzles, General relationship between area, velocity and pressure.

Unit 4: Condensers, Cooling Towers and Steam Turbines

[07 Hours]

Condensers and Cooling Towers: Elements of steam condensing plants, advantages of using condensers, types of condensers, thermodynamic analysis of condensers, efficiencies, cooling towers.

Steam Turbines: Advantages and classification of steam turbines, compounding of steam turbines, velocity diagrams, work one done and efficiencies, losses in turbines.

Unit 5: Reciprocating Air Compressor

[07 Hours]

Classification constructional details, theoretical and actual indicator diagram, FAD, multi staging, condition for maximum efficiency, capacity control.

Rotary Compressor— Concepts of Rotary compressors, Root-blower and type compressors, Centrifugal compressors. Velocity diagram, construction and expression for work done, introduction to slip factor, power input factor.

Texts:

- 1. T. D. Eastop, A. McConkey, "Applied Thermodynamics", Addison Wesley Longman.
- 2. Rayner Joel, "Basic engineering Thermodynamics", Addison Wesley Longman.

References:

- 1. Yunus A. Cengel, "Thermodynamics- An Engineering Approach", Tata McGraw Hill Publications
- 2. P. K. Nag, "Basic and Applied Thermodynamics", Tata McGraw Hill Publications.
- 3. P. K. Nag, "Power Plant Engineering", Tata McGraw Hill Publications, 2nd edition.
- 4. Sharma and Mathur, "Internal Combustion Engines", Tata McGraw Hill Publications.

Mechanical Engineering Lab – III

BTMCL 507 PCC 11 Heat Transfer Lab.+Theory of	0-0-6	3 Credit
---	-------	----------

	Machines Lab II + Machine	
	Design Practice-I	

Practical Scheme:	Examination Scheme:
Practical: 6 hrs/batch	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

Group A (Heat Transfer Lab)

List of Practical's/Experiments/Assignments (Any Three from Group

- 1. Determination of thermal conductivity of a metal rod.
- 2. Determination of thermal conductivity of insulating powder.
- 3. Determination of conductivity of a composite slab.
- 4. Temperature is distribution on a fin surface.
- 5. Determination of film heat transfer coefficient for natural convection.
- 6. Determination of film heat transfer coefficient for forced convection.
- 7. Determination of heat transfer coefficient for cylinder in cross flow in forced convection.
- 8. Performance of Double pipe Heat Exchanger/Shell and Tube Heat Exchanger.
- 9. Determination of emissivity of a metal surface.
- 10. Determination of Stefan Boltzman's constant.
- 11. Determination of critical heat flux.
- 12. Calibration of measuring instruments pressure gauge, thermocouple, flow-meter etc.

Group B (Theory of Machines Lab - II)

Listof Practical's/Experiments/Assignments (Any Three from Group B)

Term work should consist of total 10 experiments from the below given list.

- 1. Study of various types of gear boxes such as Industrial gear box, Synchromesh gear box, Differential gear box, etc.
- 2. To draw conjugate profile for any general shape of gear tooth
- 3. To generate gear tooth profile and to study the effects under cutting and rack shift using models
- 4. To draw cam profile for various types of follower motions
- 5. To study various types of lubricating systems
- 6. To study various types of dynamometers
- 7. To determine speed vs. lift characteristic curve of a centrifugal governor and to find its coefficient of insensitiveness and stability.
- 8. Verification of principle of gyroscope and gyroscopic couple using motorized gyroscope
- 9. Study of any tow gyro-controlled systems
- 10. To study the dynamic balancing machine and to balance a rotor such as a fan or the rotor of electric motor or disc on the machine

- 11. To determine the natural frequency of damped vibration of a single degree of freedom system and to find its damping coefficient
- 12. To verify natural frequency of torsional vibration of two rotor system and position of node
- 13. To determine critical speed of a single rotor system
- 14. To determine transverse natural frequency of a beam experimentally using frequency measurement setup
- 15. To determine the frequency response curve under different damping conditions for the single degree of freedom system
- 16. To study shock absorbers and to measure transmissibility of force and motion.
- 17. Study of epicyclic gear train and its dynamic behavior

Group C (Machine Design Practice – I)

List of Practical's/Experiments/Assignments

- The term work shall consist of 01 design projects based on syllabus of Machine Design-I. Design project shall consist of 2 full imperial size sheets-one involving assembly drawings with a part list and overall dimensions and other sheet involving drawings of individual components. Manufacturing tolerances, surface finish symbols and geometric tolerances should be specified, where ever necessary, so as to make it a working drawing.
 Make the Project full on AutoCAD or on any 3D Design software print the full sheet on A3
 - Make the Project full on AutoCAD or on any 3D Design software print the full sheet on A3 size paper.
- 2. A design report giving all necessary calculations for the design of components and assembly should be submitted in a separate file. Sheets for one of the projects will be drawn using AutoCAD and computer print outs using plotter of the same will be attached along with the design report.
- 3. At least two assignments based on topics of syllabus of Machine Design-I.

IT – 2 Evaluation

BTMI408	IT – 2 Evaluation	PROJ-3	0L-0T-0P	1 Credits
(IT-2)				

Teaching Scheme:	Examination Scheme:
Lecture:	Continuous Assessment:
	Mid Semester Exam:
	End Semester Exam: 100 Marks

Semester - VI

Manufacturing Processes - II

BTMC 601 P	PCC12	Manufacturing Processes - II	3-1-0	4 Credits
------------	-------	------------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the process of powder metallurgy and its applications
CO2	Calculate the cutting forces in orthogonal and oblique cutting
CO3	Evaluate the machinability of materials
CO4	Understand the abrasive processes
CO5	Explain the different precision machining processes
CO6	Understanding plastic

Course	Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1			2					1
CO2	3	3										1
CO3	3	3	1	2	3							1
CO4	3	3	2									1
CO5	3	3	1	3								1
CO6	3	1	3	3	3			2				1

Course Contents:

Unit 1: Abrasive Machining and Finishing Operations

[07 Hours]

Introduction; Abrasives and Bonded Abrasives: Grinding Wheels, Bond Types, Wheel Grade and Structure; Grinding Process: Grinding-wheel wear, Grinding Ratio, Dressing, Truing and Shaping of Grinding Wheels, Grindability of Materials and Wheel Selection; Grinding Operations and Machines, Finishing Operations

Unit 2: Mechanics of Metal Cutting

[07 Hours]

Geometry of single point cutting tools, terms and definitions; chip formation, forces acting on the cutting tool and their measurement; specific cutting energy; plowing force and the "size effect"; mean shear strength of the work material; chip thickness: theory of Ernst and merchant, theory of Lee and Shaffer.

Unit 3: Thermal aspects, Tool wear, and Machinability

[07 Hours]

Temperature in Metal Cutting: Heat generation in metal cutting; temperature distribution in metal cutting, effect of cutting speed on temperatures, measurement of cutting temperatures **Tool life and tool Wear:** progressive tool wear; forms of wear in metal cutting: crater wear, flank wear, tool-life criteria.

Cutting tool materials: Basic requirements of tool materials, major classes of tool materials: high-speed steel, cemented carbide, ceramics, CBN and diamond, tool coatings; use of cutting fluid.

Unit 4: Processing of Powder Metals

[07 Hours]

Introduction; Production of Metal Powders: Methods of Powder Production, Particle Size, Shape, and Distribution, Blending Metal Powders; Compaction of Metal Powders: Equipment, Isostatic Pressing, Sintering; Secondary and Finishing Operations.

Unit 5: Processing of Plastics Ceramics and Glasses

[07 Hours]

Plastics: Introduction; Extrusion: Miscellaneous Extrusion Processes, Production of Polymer Reinforcing Fibers; Injection Molding: Reaction-injection Molding; Blow Moulding; Rotational Moulding; Thermoforming; Compression Moulding; Transfer Moulding; Casting; Foam Moulding; Cold Forming and Solid-phase Forming; Processing Elastomers.

Texts:

- 1. Serope Kalpakjian and Steven R. Schmid, "Manufacturing Engineering and Technology", Addison Wesley Longman (Singapore) Pte. India Ltd., 6thedition, 2009.
- 2. Geoffrey Boothroyd, Winston Knight, "Fundamentals of Machining and Machine Tools", Taylor and Francis, 3rd edition, 2006.

References:

- 1. Milkell P. Groover, "Fundamentals of Modern Manufacturing: Materials, Processes, and Systems", John Wiley and Sons, New Jersey, 4th edition, 2010.
- 2. Paul De Garmo, J. T. Black, Ronald A. Kohser, "Materials and Processes in Manufacturing",

Wiley, 10th edition, 2007.

3. M. C. Shaw, "Theory of Metal Cutting", Oxford and I.B.H. Publishing, 1st edition, 1994.

Machine Design - II

BTMC 602	PCC13	Machine Design - II	3-1-0	4 Credits
----------	-------	---------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Define function of bearing and classify bearings.
CO2	Understanding failure of bearing and their influence on its selection.
CO3	Classify the friction clutches and brakes and decide the torque capacity and friction disk parameter.
CO4	Select materials and configuration for machine element like gears.
CO5	Design of elements like gears, belts for given power rating

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1						1				1
CO2	3	2		1		1		1		1		1
CO3	1	1				1		1		1		1
CO4	3	3	2	1		2		1		1		1
CO5	1	1				1		1		1		1

Course Contents:

Unit1: Rolling Contact Bearings [07 Hours]

Types, Static and dynamic load carrying capacities, Stribeck's Equation, Equivalent load, load and life relationship, selection of bearing life, Load factor, selection of bearing from manufacturer's catalogue, Taper roller bearings and their selection, Cyclic loads and speeds, Design for probability of survivalotherthan 90% Lubrication and mountings of rolling contact bearings.

Unit2: Spur Gear [07 Hours]

Gear drives, Classification of gears, Law of gearing, Terminology of spur gear, Standard system of gear tooth force analysis, gear tooth failures, Selection of materials Constructional, Number of teeth, Face with, Beams strength equation, Effective load on gear tooth, Estimation of module based on beams strength. Design for maximum power capacity, Lubrication of gears.

Helical Gears: Terminology, Virtual number of teeth, Tooth proportions, Force analysis, Beam strength equation, Effective load on gear tooth Wear strength equation.

Unit3: Bevel Gears [07 Hours]

Types of bevel gears, Terminology of straight bevel, force analysis, Beam and Wear strength, Effective load on gear tooth.

Worm Gears: Terminology, Proportions, Force analysis, Friction in worm gears, Vector method, Selection o materials, Strength and wear rating, Thermal considerations

Unit4: Belt and Flywheel

[07 Hours]

Flat and V belts, Geometric relationship, analysis of belt tensions, condition for maximum power, Selection of flat and V belts from manufacturer's catalogue, Adjustment of belt tensions. Roller chains, Geometric relationship, polygonal effect.

Flywheel: Introduction, types of flywheels, stresses in disc and armed flywheel.

Unit5: Brakes, Clutches

[07 Hours]

Types of clutches, torque capacity, single and multi-plate clutches, cone clutch, centrifugal clutch, friction materials.

Types of brakes, energy equation, block with shoe brake, pivoted brake with long shoe, internal expanding shoe brake, thermal considerations.

Texts:

- 1. V. B. Bhandari, "Design of machine Elements", Tata McGraw Hill Publications, New Delhi, 1998
- 2. R. L. Nortan, "Machine Design: An Integrated Approach", Pearson Education.

References:

- 1. J.E. Shigley, C.Mischke, "Mechanical Engineering Design", TataMcGraw Hill Inc, NewYork,6thedition, 2003.
- 2. R. C. Juvinall, K. M. Marshek, "Fundamentals of Machine Component Design", John Wiley&Sons, Inc,NewYork,2002.

IC Engines

BTMPE603A	PEC3	IC Engines	3-0-0	3Credits
-----------	------	------------	-------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Applied Thermodynamics – I

Course Outcomes: At the end of the course, students will be able to

CO1	Understand various types of I.C. Engines and Cycles of operation.
CO2	Analyze the effect of various operating variables on engine performance
CO3	Identify fuel metering and fuel supply systems for different types of engines
CO4	Understand normal and abnormal combustion phenomena in SI and CI engines
CO5	Evaluate performance Analysis of IC Engine and Justify the suitability of IC Engine for different application
CO6	Understand the conventional and non-conventional fuels for IC engines and effects of emission formation of IC engines, its effects and the legislation standards

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3						3					
CO2		2										
CO3	2											
CO4	2											
CO5					2		3					
CO6	2											

Course Contents:

Unit 1: Fundamentals of IC Engines

[07 Hours]

Applications, nomenclature, engine components, Engine classification, two and four stroke cycle

engines; fundamental difference between SI and CI engines; valve timing diagrams.

Power Cycles: Air standard Otto, Diesel and Dual cycles; Valve timing diagrams, Fuel-Air cycles and deviation of actual cycles from ideal cycles.

Unit 2: Combustion [07 Hours]

Introduction, important qualities and ratings of SI Engines fuels; qualities and ratings of CI Engine fuels.

Combustion in S.I. Engines, flame speed, ignition delay, normal and abnormal combustion, effect of engine variables on flame propagation and ignition delay, Combustion in C.I. Engines, combustion of a fuel drop, stages of combustion, ignition delay, combustion knock; types of SI and CI Engine combustion chambers.

Unit 3: Various Engine Systems and Engine Testing and Performance [07 Hours]

Starting systems, fuel supply systems, engine cooling system, ignition system, engine friction and lubrication systems, governing systems.

Engine Testing and Performance of SI and CI Engines

Parameters, Type of tests and characteristic curves.

Super charging in IC Engine: Effect of attitude on power output, types of supercharging. **Engine Emissions and control**: Pollutants from SI and CI engines and their control, emission regulations such as Bharat and Euro.

Unit 4: Alternate fuels [07 Hours]

Need for alternative fuels, applications, various alternate fuels etc

Gaseous Fuels, Alcohols, Biodiesels, vegetable oil extraction, Trans-esterification process, properties of alternative fuels and fuel blends.

Fuel Cell Technology: Operating principles, Types, construction, working, application, advantages and limitations.

Unit 5: Layout of Electric vehicle and Hybrid vehicles

[07 Hours]

Advantages and drawbacks of electric and hybrid vehicles, System components, Electronic control system – Different configurations of Hybrid vehicles, Power split device. High energy and power density batteries – Basics of Fuel cell vehicles

Texts References:

- 1. V. Ganeshan, "Internal Combustion Engines", Tata McGraw Hill Publications, New Delhi, 3rd edition.
- 2. J. B. Heywood, "Internal Combustion Engine Fundamentals", Tata McGraw Hill Publications, New York, International Edition, 1988.
- 3. "Alternative Fuels", Dr. S. S. Thipse, Jaico publications.
- 4. "IC Engines", Dr. S. S. Thipse, Jaico publications.
- 5. "Engine Emissions, pollutant formation", G. S. Springer and D.J. Patterson, Plenum Press.
- 6. ARAI vehicle emission test manual.
- 7. Gerhard Knothe, Jon Van Gerpen, Jargon Krahl, "The Biodiesel Handbook", AOCS Press
- 8. Champaign, Illinois 2005.
- 9. Richard L Bechtold P.E., Alternative Fuels Guide book, Society of Automotive Engineers,
- 10. 1997, ISBN 0-76-80-0052-1.

Transactions of SAE on Biofuels (Alcohols, vegetable oils, CNG, LPG, Hydrogen, Biogas etc.

Mechanical Vibration

BTMPE603B PEC3	Mechanical Vibration	3-0-0	Credits
----------------	----------------------	-------	---------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Theory of Machines - II

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the cause and effect of vibration in mechanical system
CO2	Formulate governing equation of motion for physical system
CO3	Understand role of damping, stiffness and inertia in mechanical system
CO	Analyze rotating system and calculate critical speeds
CO5	Estimate the parameters of vibration isolation system
CO6	Estimate natural frequencies and mode shapes of continuous system

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	2	1	1					2
CO2	3	3	2	1	1							2
CO3	3	2	2	1	1							2
CO4	3	3	2	2	2							2
CO5	3	3	2	2	2		3					2
CO6	3	3	3	2								2

Course Contents:

Unit 1: Single DOF- Free Vibrations

[07 Hours]

Basic concepts: Causes and effect of vibrations, practical applications, harmonic and periodic motions, vibration terminology, vibration model, Equation of motion -natural frequency, Energy

method, Rayleigh method, principle of virtual work, damping model, viscously damped free vibration, Oscillatory, non-oscillatory and critically damped motions, logarithmic decrement. Coulomb's damping.

Unit 2: Single DOF- Forced Vibrations

[07 Hours]

Analysis of linear and torsional system subjected to harmonic force excitation, force transmissibility, Magnification factor, motion transmissibility, vibration isolation, typical isolator and mounts, critical speed of single rotor, undamped and damped.

Unit 3: Two DOF Systems

[07 Hours]

Introduction, formulation of equation of motion, equilibrium method, lagrangian method, free vibration response, Eigen values and eigen vector, Normal mode and mode superposition, Coordinate coupling, decoupling equation of motion.

Unit 4: Torsional Vibration

[07 Hours]

Simple system with one or two rotor masses, Multi DOF system: transfer matrix method, gearedsystem, and branched system.

Unit 5: Multi Degree of Freedom System and Continuous Systems

[07 Hours]

Formulation of equation of motion, free vibration response, natural mode and mode shapes, orthogonality of model vectors, normalization of model vectors, decoupling of modes, model analysis, mode superposition technique. Free vibration response through model analysis. DF

Continuous Systems

Vibration of strings, longitudinal and transverse vibration of rods, transverse vibrations of beams, equation of motions and boundary conditions, transverse vibration of beams, natural frequencies and mode shapes.

Texts:

1. L. Meirovich, "Elements of Vibration Analysis", Tata McGraw Hill.

References:

- 1. S. S. Rao, "Mechanical Vibrations", Pearson education.
- 2. W. T. Thompson, "Theory of Vibration", CBS Publisher.

Machine Tool Design

BTMPE603C	PEC3	Machine Tool Design	3-0-0	3Credits
-----------	------	---------------------	-------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 2 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Machine design and Manufacturing processes-I

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand basic motion involved in a machine tool.
CO2	Design machine tool structures for conventional and CNC machines.
CO3	Design and analyze system for specified speeds and feeds.
CO4	Understand control strategies for machine tool operations.
CO5	Design of rotary and linear drive for machine tools.
CO6	Analyze machine tool structure for design accuracy.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	1				1	1	1
CO2	3	1	3	1	2	1	1		1	1	1	1
CO3	2	1	2	1	1	1			1	1	1	1
CO4	2	1	1	1	1	1	1			1	1	1
CO5	3	1	3	1	1	1	1		1	1	1	1
CO6	2	1	2	1	1	1	1		1	1	1	1

Course Contents:

Unit 1: Introduction [07 Hours]

Kinematics of different types of machine tools, selection of cutting conditions and tools, calculations of cutting force on single point and multipoint tools, hole machining, calculation of

power, accuracy requirements and standards.

Unit 2: Design of Rotary Drives

[07 Hours]

Design of spindle drives, AC motors with stepped drive, DC and AC variable speed drive motor characteristics and selection, principle of speed controllers, timing belts and other types of transmission belting, closed loop operation of mail drives, rotary indexing drives.

Unit 3: Design of Feed Drives

[07 Hours]

Feed drive using feed boxes, axes feed drive of CNC drives, DC and AC servomotors, characteristics controllers and their selection, Ball screws and friction guide ways, linear motion systems, design calculation of drives, closed loop operations of feed drive, linear indexing drives.

Unit 4: Control Elements

[07 Hours]

Single and multi-axis CNC controllers, hydraulic control, Pneumatic control limit switches, proximity switches, sequencing control using hardwired and PLC systems.

Design of machine tool structures: Static and dynamic stiffness, dynamic analysis of cutting process, stability, forced vibration, ergonomics and aesthetics in machine tool design.

Unit 5: Design of Spindle and Spindle Supports and Design of Special Purpose Machines[07 Hours]

Function of spindles, design requirements, standard spindle noses, design calculation of spindles, bearing selection and mounting.

Finite elements analysis of machine tool structures: Examples of static, dynamic and thermal analysis and optimization of typical machine tool structure like column and using a finite element analysis package.

Design of Special Purpose Machines

Modular design concepts, standard modules, example of design of typical SPM with CNC, transfer machines.

Texts:

- 1. N. K. Mehta, "Machine Tool Design", Tata McGraw Hill Book Co., 1991.
- 2. P.C. Sharma, "A Textbook of Machine Tools and Tool Design", S. Chand & Co. Ltd., 1 January 2005.
- 3. Sen and Bhattacharya, "Principles of Machine Tools", 1 Jan 2009.
- 4. Yoram Koren, "Computer control of manufacturing systems", Tata McGraw Hill Education, 2009.

References:

- 1. Aacherkan, "Machine Tool Design", Vol. I and Vol. III, Mir Publishers, Moscow, 1970.
- 2. W. L. Cheney, "Details of Machine Tool Design (Classic Reprint)", Forgotten Books, 20 Sep 2016.
- 3. Central Machine Tool Institute, "Machine Tool Design Handbook", Tata McGraw Hill Education, 1st Edition, 16 June 2001.
- 4. Nicholas Lisitsyn, Alexis V Kudryashov, Oleg Trifonov, Alexander Gavryusin, N Acherkan, Nicholas Weinstein, "Machine Tool Design", Vol. I, University Press of the Pacific, 20 April 2000.

Engineering Metrology and Quality Control

BTMPE603D PEC 3	Metrology and Quality Control	3-0-0	3 Credits
-----------------	-------------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify techniques to minimize the errors in measurement
CO2	Identify methods and devices for measurement of length, angle, and gear and thread
002	parameters, surface roughness and geometric features of parts.
CO3	Choose limits for plug and ring gauges.
CO4	Explain methods of measurement in modern machineries
CO5	Select quality control techniques and its applications
CO6	Plot quality control charts and suggest measures to improve the quality of product and
	reduce cost using Statistical tools.

Mapping of course outcomes with program outcomes

Course					P	rogran	Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				3								2
CO2		2	2		2							
CO3			2	3	2							
CO4						3						
CO5	1					2		3	3		3	2
CO6	1					2		3	3		2	2

Course Contents:

Unit 1: Measurement Standard and Comparators

[07 Hours]

Measurement Standard, Principles of Engineering Metrology, Line end, wavelength, Traceability of Standards. Types and Sources of error, Alignment, slip gauges and gauge block, Linear and Angular Measurement (Sine bar, Sine center, Autocollimator, Angle Décor and Dividing head), Calibration. Comparator: Mechanical, Pneumatic, Optical, Electronic (Inductive), Electrical

(LVDT).

Unit 2: Interferometry and Limits, Fits, Tolerances

[07 Hours]

Principle, NPL Interferometer, Flatness measuring of slip gauges, Parallelism, Laser Interferometer, Surface Finish Measurement: Surface Texture, Measuring Surface Finish by Stylus probe, Tomlinson and Talysurf, Analysis of Surface Traces: Methods.

Design of Gauges: Types of Gauges, Limits, Fits, Tolerance; Terminology for limits and Fits. Indian Standard (IS 919-1963) Taylor's Principle.

Unit 3: Metrology of Screw Thread

[07 Hours]

Gear Metrology: Gear error, Gear measurement, Gear Tooth Vernier; Profile Projector, Tool marker's microscope. Advancements in Metrology: Co-ordinate Measuring Machine, Universal Measuring Machine, Laser in Metrology.

Unit 4: Introduction to Quality and Quality Tools

[07 Hours]

Quality Statements, Cost of Quality and Value of Quality, Quality of Design, Quality of Conformance, Quality of Performance, Seven Quality Tools: Check sheet, Flow chart, Pareto analysis, cause and effect diagram, scatter diagram, Brain storming, Quality circles.

Unit 5: Total Quality Management and Statistical Quality Control

[07 Hours]

Quality Function Deployment, 5S, Kaizan, Kanban, JIT, Poka yoke, TPM, FMECA, FTA, Zero defects.

Statistical Quality Control: statistical concept, Frequency diagram, Concept of Variance analysis, Control chart for variable & attribute, Process Capability.

Acceptance Sampling: Sampling Inspection, sampling methods. Introduction to ISO 9000: Definition and aims of standardizations, Techniques of standardization, Codification system.

Texts:

- 1. I. C. Gupta, "Engineering Metrology", Dhanpat and Rai Publications, New Delhi, India.
- 2. M. S. Mahajan, "Statistical Quality Control", Dhanpat and Rai Publications.

References:

- 1. R. K. Jain, "Engineering Metrology", Khanna Publications, 17th edition, 1975.
- 2. K. J. Hume, "Engineering Metrology", McDonald Publications, 1st edition, 1950.
- 3. A. W. Judge, "Engineering Precision Measurements", Chapman and Hall, London, 1957.
- 4. K. L. Narayana, "Engineering Metrology", Scitech Publications, 2nd edition.
- 5. J. F. Galyer, C. R. Shotbolt, "Metrology for Engineers", Little-hampton Book Services Ltd., 5th edition, 1969.
- 6. V. A. Kulkarni, A. K. Bewoor, "Metrology & Measurements", Tata McGraw Hill Co. Ltd., 1st edition, 2009.
- 7. AmitavaMitra, "Fundamental of Quality Control and Improvement", Wiley Publication.
- 8. V. A. Kulkarni, A. K. Bewoor, "Quality Control", Wiley India Publication, 01st August, 2009.

- 9. Richard S. Figliola, D. E. Beasley, "Theory and Design for Mechanical Measurements", Wiley India Publication.
- 10. E. L. Grant, "Statistical Quality Control", Tata McGraw Hill Publications.
- J. M. Juran, "Quality Planning and Analysis", Tata McGraw Hill Publications.

Advance Automobile Design

BTAPE603C PEC3 Automobile Body Design	3-0-0	3Credits
---------------------------------------	-------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

Course Contents:

Domain Related Training

Unit 1: [07 Hours]

BIW: Requirement Specification in the Pre-Program Stage, Product Life Cycle & Important Gateways for BIW, Identification of Commodities for BIW, Design Concept & Considerations in BIW, BIW Materials & Grades, GD & T for BIW.

Unit 2: [07 Hours]

Sheet Metal Joining – Welds, Adhesives, TWBs. DFMEA, Design Verification – CAE Methods & Gateway supports Part A& B, CAE Analysis – NVH, Crash & Durability, Test Validation & Assessment.

Unit 3: [07 Hours]

Manufacturing – Sequence, Welding & Assembly, Future Trends in BIW, BIW: Examples & Case Studies

Unit 4: [07 Hours]

Trims: Requirement Specification in the Pre-Program Stage, Product Life Cycle & Important Gateways for Trims, Identification of Commodities for Trims, Design Requirements & Considerations, Trim Materials in Automotive.

Unit 5: [07 Hours]

Design of Plastic Part, DFMEA, Design Verification – CAE Methods & Gateway supports, CAE Analysis – Moldflow, Crash & Durability, Test Validation & Assessment Manufacturing Process, Assembly Sequence, Future Trends & Future Material for Trims, Trims: Examples & Case Studies

Texts:

- 1. Notes of TATA Technologies
- 2. Curt Larson, "Datum Principles: Flexible Parts: Applications for Automotive Body-in-White and Interior Trim (Dimensional Management Series Book 1)", Right Tech, Inc., Kindle Edition.
- 3. Curt Larson, "Datum Principles: Flexible Parts: Applications for Automotive Body-in-White and Interior Trim (Dimensional Management Series Book 2)", Right Tech, Inc., Kindle Edition.

References:

- 1. Vukato Boljanovic, "Sheet Metal Forming Processes and Die Design", Industrial press Inc., Kindle Edition.
- 2. R. D. Cook, Concepts and Applications of Finite Element Analysis; John Wiley and Sons, second edition, 1981.
- 3. K.J. Bathe, Finite Element Method and Procedures; Prentice hall, 1996.
- 4. Ibrahim Zeid, "CAD/CAM Theory and Practice", Tata McGraw Hill Publication,
- 5. J. H. Dubois And W. I. Prebble, *Plastics Mold Engineering Handbook*, Van Nostr and Reihnhold, New York, 1987.
- 6. Geoffrey Boothroyd, Peter Dewhurst and Winston Knight, Product Design for Manufacturing and Assembly, 2nd Edition
- 7. C. Howard, *Modern Welding Technology*, Prentice Hall, 1979.
- 8. Jesper Christensen and Christophe Bastien, "Nonlinear Optimization of Vehicle Safety Structures: Modeling of Structures Subjected to Large Deformations, Butterworth-Heinemann, Kindle Edition
- 9. Grieves, Michael, Product Lifecycle Management, McGraw-Hill, 2006. ISBN 0071452303
- 10. Stark, John. Product Lifecycle Management: Paradigm for 21st Century Product Realization, Springer Verlag, 2004. ISBN 1852338105

E Vehicles

BTAPE603E	E Vehicles	PEC 3	3L-0T-0P	3 Credits

Teaching Scheme:	Examination Scheme:
	Continuous Assessment: 20 Marks
Lecture: 3 hrs/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to

Course Contents:

Unit I: Introduction to EV:

[07 Hours]

Past, Present & Feature of EV, Current Major Issues, Recent Development Trends, EV Concept, Key EV Technology, State-of-the Art EVs, Comparison of EV Vs IC Engine.

Unit II: EV System: [07 Hours]

EV Configuration: Fixed & variable gearing, single & multiple motor drive, In-wheel drives **EV Parameters:**

Weight, size, force, energy & performance parameters.

Unit III: EV Propulsion:

[07 Hours]

Electric Motor:

Choice of electric propulsion system, block diagram of EV propulsion system, concept of EV Motors, single motor and multi-motor configurations, fixed & variable geared transmission, Inwheel motor configuration, classification of EV motors, Electric motors used in current vehicle applications, Recent EV Motors, Comparison of Electric Motors for EV applications Required Power Electronics & Control:

Comparison of EV power devices, introduction to power electronics converter, four quadrant DC chopper, three-phase full bridge voltage-fed inverter, soft-switching EV converters, comparison of

hard-switching and soft-switching converter, three-phase voltage-fed resonance dc link inverter, Basics of Microcontroller & Control Strategies

Unit IV: EV Motor Drive:

[07 Hours]

DC Motor: Type of wound-field DC Motor, Torque speed characteristics

DC-DC Converter, two quadrant DC Chopper, two quadrant zero voltage transition converter-fed dc motor drive, speed control of DC Motor

Induction Motor Drive: Three Phase Inverter Based Induction Motor Drive, Equal Area PWM, Three Phase Auxiliary resonant snubber (ARS) Inverter Type (ZVC & ZCS), Single Phase ARS Inverter Topology, Speed Control of Induction Motor, FOC, Adaptive Control, Model Reference Adaptive Control (MARS), Sliding mode Control,

Unit V: Energy Sources & Charging:

[07 Hours]

Different Batteries and Ultracapacitors, Battery characteristics (Discharging & Charging) Battery Chargers: Conductive (Basic charger circuits, Microprocessor based charger circuit.

Arrangement of an off-board conductive charger, Standard power levels of conductive chargers, Inductive(Principle of inductive charging, Soft-switching power converter for inductive charging), Batteryindication methods

Charging Infrastructure: Domestic Charging Infrastructure, Public Charging Infrastructure, Normal Charging Station, Occasional Charging Station, Fast Charging Station, Battery Swapping Station, Move-and-charge zone.

References:

- 1. C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001
- 2. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.
- 3. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.
- 4. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

Process Equipment Design

BTMPE604A PEC4	Process Equipment Design	3-0-0	Credits
----------------	--------------------------	-------	---------

Teaching Scheme:	Examination Scheme:
Lecture: 2 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the factors influencing design of pressure vessel
CO2	Calculate thickness and thickness variation for cylindrical storage tank
CO3	Estimation of thickness for thin and thick wall pressure vessels
CO4	Design of flange and gasket selection for cylindrical pressure vessels
CO5	Selection of various blade and baffle arrangement for agitators
CO6	Design of support for horizontal and vertical vessel

Tripping of course outcomes with program outcomes												
Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		1			1	1	1				1
CO2	2	2	1			1	1	1				1
CO3	2	2	2			1	1	1				1
CO4	2	2	2			1	1	1				1
CO5	2	2	1			1	1	1				1
CO6	2	2	2			1	1	1				1

Course Contents:

Unit 1: Design Considerations for Pressure Vessel

[07 Hours]

Selection of type of vessel, Methods of fabrication, Effect of fabrication methods, various criteria in vessel design, Economic considerations, Types of process equipment, Constructional requirement and applications. Fabrication and testing, Inspection and non-destructive testing of equipment.

Unit 2: Storage Vessel

[07 Hours]

Design methods of atmospheric storage vessel: storage of fluids, storage of non-volatile liquids, storage of volatile liquids, storage of gases, Optimum tank proportion, Bottom design, Shell design, Wind girder for open top tank, Rub curb angle, Self-supported roof, Design of rectangular tank,

Unit 3: Pressure Vessel

[07 Hours]

Unfired process vessel with internal and external pressure, Operating condition, Selection of material, Design condition, Stresses, Design criteria, Design of shell subjected to internal and external pressure, cylindrical vessel under combined loading,

Design of heads and closures: flat head and formed heads for vessel. Design consideration for rectors and chemical process vessels. Flange facings, Gaskets, Design of flanged joint, Flange thickness, and Blind flanges.

Unit 4: High Pressure Vessel

[07 Hours]

Design of thick-walled high-pressure vessel, Constructional features, Materials for high-pressure vessels, Multilayer vessel with shrink fit construction, Thermal expansion for shrink fitting, stress in multi shell or shrink fit construction, autofrettage, Pre-stressing. Tall vessels and their design, Stress in shell, Determinations of longitudinal stresses, Longitudinal bending stresses due to eccentric loads, Determination of resultant longitudinal stresses.

Unit 5: Agitated Vessel and Support for Pressure Vessel

[07 Hours]

Type of agitators, Baffling, Power requirement for agitation, Design based on torque and bending moment, Design based on critical speed, Blade design, Hub and key design, Stuffing box and gland design, Turbine agitator design,

Support for Pressure Vessel

Bracket or lug support: Thickness of the base plate, Thickness of web (gusset) plate, Column support for bracket base plate for column or leg support. Skirt Support: Skirt design, Skirt bearing plate, and Anchor bolt design, Design of bolting chair. Saddle Support: Longitudinal bending moment, Stresses in shell at saddle.

Texts:

- 1. V. V. Mahajani, S. B. Umarji, "Process Equipment Design", Macmillan Publisher India Ltd.
- 2. L. E. Brownell, E. H. Young, "Process equipment design", John Wiley and Sons.
- 3. C. Bhattacharya, "Introduction to process Equipment Design".

Reference Book:

- 1. Dennis Moss, "Pressure Vessel Design Manual", Elsevier.
- 2. John F. Harvey, "Theory and Design of Pressure Vessels", CBS Publication

Product Life Cycle Management

BTMPE604B	PEC4	Product Life Cycle Management	3-0-0	3Credits
-----------	------	-------------------------------	-------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks Mid Semester Exam: 20 Marks End Semester Exam: 60 Marks (Duration 03 hrs)

Objectives: Establishing industry partnerships that guide, support, and validate PLM research and education activities assisting with the integration of PLM into College curricula and facilitating the PLM career opportunities.

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Outline the concept of PLM.
CO2	Illustrate the PDM system and its importance.
CO3	Illustrate the product design process.
CO4	Build the procedure for new product development.
CO5	Classify and compare various technology forecasting methods.
CO6	Outline the stages involved in PLM for a given product.

Course Outcomes						Pı	rogram	Outcor	nes				
`	course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	1				1						1	
	CO2	1				1		1				1	
	CO3	1		1		1							
	CO4	1		1		1						1	

CO5	1		1	1			
CO6	1		1		1		1

Course Contents:

Unit 1: Introduction and strategies to PLM

[07 Hours]

Need for PLM, opportunities and benefits of PLM, different views of PLM, components of PLM, phases of PLM, PLM feasibility study, PLM visioning, Industrial strategies, strategy elements, its identification, selection and implementation, change management for PLM.

Unit 2: Product Data Management (PDM)

[07 Hours]

Human resources in product lifecycle, Information, Standards, Vendors of PLM Systems and Components, PDM systems and importance, reason for implementing a PDM system, financial Justification of PDM, barriers to PDM implementation

Unit 3: Product Design

[07 Hours]

Engineering design, organization and decomposition in product design, product design process, methodical evolution in product design, concurrent engineering, design for 'X' and design central development model. Strategies for recovery at end of life, recycling, human factors in product design. Modeling and simulation in product design.

Unit 4: New Product Development

[07 Hours]

Structuring new product development, building decision support system, Estimating market opportunities for new product, new product financial control, implementing new product development, market entry decision, launching and tracking new product program, Concept of redesign of product

Unit 5: Technology Forecasting and PLM Software and Tools

[07 Hours]

Future mapping, invocating rates of technological change, methods of technology forecasting such as relevance trees, morphological methods and mission flow diagram, combining forecast of different technologies, uses in manufacture alternative.

PLM Software and Tools

Product data security. Product structure, workflow, Terminologies in workflow, The Link between Product Data and Product Workflow, PLM applications, PDM applications.

Texts/References:

- 1. Grieves, Michael, "Product Lifecycle Management", Tata McGraw-Hill, 2006, ISBN 007145230330.
- 2. Antti Saaksvuori, Anselmi Immonen, "Product Life Cycle Management", Springer, 1st edition, 2003.
- 3. Stark, John, "Product Lifecycle Management: Paradigm for 21stCentury Product Realization", Springer-Verlag, 2004.
- 4. Fabio Giudice, Guido La Rosa, "Product Design for the environment-A life cycle approach", Taylor & Francis, 2006.
- 5. Robert J. Thomas, "NPD: Managing and forecasting for strategic processes".

Finite Element Method

BTMPE604C PEC	Finite Element Method	3-0-0	3Credits
---------------	-----------------------	-------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 3hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the basic principle of Finite element methods and its applications
CO2	Use matrix algebra and mathematical techniques in FEA
CO3	Identify mathematical model for solution of common engineering problem
CO4	Solve structural, thermal problems using FEA
CO5	Derive the element stiffness matrix using different methods by applying basic mechanics laws
CO6	Understand formulation for two- and three-dimensional problems

Course					F	rogran	n Outc	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1		1				1		1	1
CO2	2	3	2	1	2	1		1			2	1
CO3	3	2	2	1	1				1		2	1
CO4	3	3	2	1	2		1		1		2	1

	CO5	3	1	1	1	1		2	1
ĺ	CO6	1	1	1			1	1	1

Course Contents:

Unit 1: Introduction [07 Hours]

Finite element analysis and its need, Advantages and limitations of finite element analysis (FEA), FEA procedure.

Unit 2: Elements of Elasticity

[07 Hours]

Stress at a point, Stress equation of equilibrium, 2-D state of stress, Strains and displacements, Stress-strain relationship for 2-D state of stress, Plane stress and plane strain approach.

Unit 3: Relevant Matrix Algebra

[07 Hours]

Addition, subtraction and multiplication of matrices, Differentiation and integration of matrices, Inverse of a matrix, Eigen values and eigen vectors, Positive definite matrix, Gauss elimination.

Unit 4: One-Dimensional Problems

[07 Hours]

Introduction, FE modeling, Bar element, Shape functions, Potential energy approach, Global stiffness matrix, Boundary conditions and their treatments, Examples.

Unit 5: Trusses and Frames and Two-dimensional Problems

[07 Hours]

Introduction, Plane trusses, Element stiffness matrix, Stress calculations, Plane frames, examples.

Two-dimensional Problems

Introduction and scope of 2-D FEA, FE modeling of 2-D problem, Constant strain triangle, other finite elements (no mathematical treatment included), Boundary conditions.

Texts:

- T. R. Chandrupatla, A.D. Belegundu, "Introduction to Finite Elements in Engineering", Prentice Hall of India Pvt. Ltd., 3rd edition, New Delhi, 2004.
- P. Seshu, "A Textbook of Finite Element Analysis", Prentice Hall of India Pvt. Ltd., New Delhi, 2003.
- R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, "Concepts and Applications of Finite Element Analysis", John Wiley &Sons, Inc.

References:

K. J. Bathe, "Finite Element Procedures", Prentice Hall of India Pvt. Ltd., 2006.

Robotics

BTMPE604D	PEC4	Robotics	3-0-0	3 Credits
-----------	------	----------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	List the various components of a typical Robot, grippers, sensors, drive system and describe their functions
CO2	Calculate the word to joint and joint to word coordinates using forward and reverse transformations
CO3	Calculate the gripper forces, drive sizes, etc.
CO4	Develop simple robot program for tasks such as pick and place, arc welding, etc. using some robotic language such as VAL-II, AL, AML, RAIL, RPL, VAL
CO5	Evaluate the application of robots in applications such as Material Handling, process operations and Assembly and inspection
CO6	Discuss the implementation issues and social aspects of robotics

	Course		Program Outcomes										
0	utcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	1	1	1		1				3	1		
	CO2	2	3	2	1	2	1			3	2		
	CO3	3	2	2	1	1				3	2		

CO4	3	3	2	1	2	1	3	2	
CO5	3	1	1		1	1	3	2	
CO6	1	1	1				3	2	

Course Contents:

Unit 1: Introduction

Various basic components of a Robotic system, various configurations, work envelopes, Manipulators, Controllers, etc., Parameters [07 Hours]

Unit2: Mechanical Systemin Robotics

Motion conversion, Kinematic chains, position analysis, forward and reverse transformations, natural and joint space coordinates, homogeneous transformation and robot kinematics, Manipulator path control, Robot Dynamics.

[07 Hours]

Unit3: Drives for Robot

Electrical drives, Stepper motor, Servo motors, DC motors, AC motors, hydraulic and pneumatic drives, hybrid drives, drive selection for robotic joints.

[07 Hours]

Unit4: Sensors and End Effectors in Robotics

Sensors:

Position sensor, velocity sensor, proximity sensors, touch sensors, force sensors, miscellaneous sensors etc. [07 Hours]

End Effectors:

Types of end effectors, Mechanical Grippers, Design of End Mechanical Grippers, and Other Principles of gripping, Tools and end effectors, Considerations in gripper selection and design.

Unit5: Robot Programming

[07 Hours]

Path planning, Lead through (manual and powered) programming, teach pendant mode, programming languages, Simple statements from AL, AML, RAIL, RPL, VAL Languages

Artificial Intelligence for Robots: Knowledge Representation, Problem representation and problem solving, search techniques in problem solving

Application of robot in: Material handling, assembly and inspection, process operations, etc. Economic Analysis for robotic implementation

Texts:

1. M. P. Grover, "Industrial Robotics: Technology, Programming and Applications", Tata Mc Graw Hill Publication.

References:

1. Saeed B. Niku, "Introduction to Robotics, Analysis, Systems, Applications", Pearson Education.

2. Richard D. Klafter, "Robotic Engineering : An Integrated Approach", Prentice Hall of India.

Computational Fluid Dynamics

BTAPE604B	Fundamentals of Computational Fluid Dynamics	PEC 4	3L-0T-0P	3 Credits
-----------	--	-------	----------	-----------

Teaching Scheme:	Examination Scheme:
	Continuous Assessment: 20 Marks
Lecture: 3 hrs/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to

CO1	Identify applications of finite volume and finite element methods to solve Navier-Stoke equations.
CO2	Evaluate solution of aerodynamic flows. Appraise & compare current CFD software. Simplif flow problems and solve them exactly.
CO3	Design and setup flow problem properly within CFD context, performing solid modeling usin CAD package and producing grids via meshing tool
CO4	Interpret both flow physics and mathematical properties of governing Navier-Stokes equation and define proper boundary conditions for solution.
CO5	Use CFD software to model relevant engineering flow problems. Analyse the CFD results Compare with available data, and discuss the findings

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1		1				3	1		

CO2	2	3	2	1	2	1		3	2	
CO3	3	2	2	1	1			3	2	
CO4	3	3	2	1	2		1	3	2	
CO5	3	1	1		1		1	3	2	
CO6	1	1	1					3	2	

Course Contents:

Unit-I: Introduction to CFD

[07 Hours]

CFD – a research and design tool, CFD as third dimension of engineering supplementing theory and experiment, Steps in CFD solution procedure, strengths and weakness of CFD, Flow modeling using control volume - finite and infinitesimal control volumes, Concept of substantial derivative, divergence of velocity, Basic governing equations in integral and differential forms – conservation of mass, momentum and energy (No derivations), Physical interpretation of governing equations, Navier-Stoke's model and Euler's model of equations.

Unit-II: Basic Discretization Techniques

[07 Hours]

Introduction to grid generation (Types of grids such as structured, unstructured, hybrid, multiblock, Cartesian, body fitted and polyhedral etc.), Need to discretize the domain and governing equations, Finite difference approximation using Taylor series, for first order (Forward Difference Approximation, Backward Difference Approximation, Central difference Approximation) and second order (based on 3 node, 4 node and 5 node points), explicit and Implicit approaches applied to 1D transient conduction equation, Counter flow equation () using FTCS and Crank Nicholson's Method, Stability Criteria concept and physical interpretation, Thomas Tri-diagonal matrix solver.

Unit-III: Two Dimensional Steady and unsteady heat conduction

[07 Hours]

Solution of two dimensional steady and unsteady heat conduction equation with Dirichlet, Neumann, Robbins and mixed boundary condition – solution by Explicit and Alternating Direction Implicit method (ADI Method), Approach for irregular boundary for 2D heat conduction problems.

Unit-IV: Application of Numerical Methods to Convection – Diffusion system [07 Hours] Convection: first order wave equation solution with upwind, Lax–Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection – Diffusion: 1D and 2D steady Convection Diffusion system – Central difference approach, Peclet Number, stability criteria, upwind difference approach, 1 D transient convection-diffusion system

Unit-V: Incompressible fluid flow

[07 Hours]

Solution of Navier-Stoke's equation for incompressible flow using SIMPLE algorithms and its variation (SIMPLER), Application to flow through pipe, Introduction to finite volume method.

CFD as Practical approach

Introduction to any CFD tool, steps in pre-processing, geometry creation, mesh generation, selection of physics and material properties, specifying boundary condition, Physical Boundary condition types such as no slip, free slip, rotating wall, symmetry and periodic, wall roughness, initializing and solution control for the solver, Residuals, analyzing the plots of various

parameters (Scalar and Vector contours such as streamlines, velocity vector plots and animation). Introduction to turbulence models. Reynolds Averaged Navier-Stokes equations (RANS), $k-\epsilon$, $k-\epsilon$. Simple problems like flow inside a 2-D square lid driven cavity flow through the nozzle

Texts/References:

- 1. "Computational Fluid Dynamics", John D Anderson: The Basics with Applications, McGraw-Hill
- 2. "Computational Fluid Dynamics", J. Tu, G.-H. Yeoh and C. Liu: A practical approach, Elsevier.
- 3. "Introduction to Computational Fluid Dynamics", A. W. Date: Cambridge University Press
- 4. "Computer Simulation of Fluid flow and heat transfer", P.S. Ghoshdastidar: Tata McGraw-Hill.
- 5. "Numerical Simulation of internal and external flows", Vol. 1, C. Hirsch, Wiley
- 6. Computational Fluid Mechanics and Heat transfer, Tannehill, Anderson, and Pletcher, CRC Press.

Open Elective-II

Quantitative Techniques in Project Management

		BTMOE605A	OEC 2	Quantitative Techniques in Project Management	3-1-0	4Credits
--	--	-----------	-------	--	-------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Engineering Mathematics-I/II/III

Course Outcomes: At the end of the course, students will be able to:

CO1	Define and formulate research models to solve real life problems for allocating limited resources by linear programming.
CO2	Apply transportation and assignment models to real life situations.
CO3	Apply queuing theory for performance evaluation of engineering and management systems.
CO4	Apply the mathematical tool for decision making regarding replacement of items in real life.
CO5	Determine the EOQ, ROP and safety stock for different inventory models.
CO6	Construct a project network and apply CPM and PERT method.

Course		Program Outcomes													
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	1	1	3	2				3	1	3	1			
CO2	3	1	1	3	2				3	2	3	1			
CO3	3	1	1	3	2				3	2	3	1			
CO4	3	1	1	3	2	1			3	2	3	1			
CO5	3	1	1	3	2	1			3	2	3	1			
CO6	3	1	1	3	2	2			3	2	3	1			

Course Contents:

Unit 1: Introduction

[07 Hours]

Introduction to Operations Research, Stages of Development of Operations Research, Applications of Operations Research, Limitations of Operations Research Linear programming problem, Formulation, graphical method, Simplex method, artificial variable techniques.

Unit 2: Assignment and Transportation Models

[07 Hours]

Transportation Problem, North west corner method, Least cost method, VAM, Optimality check methods, Stepping stone, MODI method, Assignment Problem, Unbalanced assignment problems, Travelling salesman problem.

Unit 3: Waiting Line Models and Replacement Analysis

[07 Hours]

Queuing Theory: Classification of queuing models, Model I (Birth and Death model) M/M/I (∞ , FCFS), Model II - M/M/I (N/FCFS).

Replacement Theory, Economic Life of an Asset, Replacement of item that deteriorate with time, Replacement of items that failed suddenly.

Unit 4: Inventory Models

[07 Hours]

Inventory Control, Introduction to Inventory Management, Basic Deterministic Models, Purchase Models and Manufacturing Models without Shortages and with Shortages, Reorder level and optimum buffer stock, EOQ problems with price breaks.

Unit 5: Project Management Techniques and Time and Cost Analysis [07 Hours]

Difference between project and other manufacturing systems. Defining scope of a project, Necessity of different planning techniques for project managements, Use of Networks for planning of a project, CPM and PERT.

Time and Cost Analysis

Time and Cost Estimates: Crashing the project duration and its relationship with cost of project, probabilistic treatment of project completion, Resource allocation and Resource leveling.

Texts:

- 1. P. K. Gupta, D. S. Hira, "Operations Research", S. Chand and Company Ltd., New Delhi, 1996.
- 2. L. C. Jhamb, "Quantitative Techniques for managerial Decisions", Vol. I and II, Everest Publishing House, Pune, 1994.
- 3. N. D. Vohra, "Operations Research", Tata McGraw Hill Co., New Delhi.

References:

- 1. H. Taha, "Operations Research-An Introduction", Maxwell Macmillan, New York.
- 2. J. K. Sharma, "Operations Research-An Introduction", Maxwell Macmillan, New Delhi.
- 3. Harvey M. Wagner, "Principles of Operations Research with Applications to Managerial Decisions", Prentice Hall of India Pvt. Ltd., New Delhi, 2nd edition, 2005.
- 4. Rubin and Lewin, "Quantitative Techniques for Managers", Prentice Hall of India Pvt. Ltd., New Delhi.

Nanotechnology

BTMOE605B	OEC2	Nanotechnology	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Demonstrate the understanding of length scales concepts, nanostructures and
CO1	nanotechnology.
CO2	To impart basic knowledge on various synthesis and characterization techniques involved
CO2	in Nanotechnology
CO3	To educate students about the interactions at molecular scale
CO4	Evaluate and analyze the mechanical properties of bulk nanostructured metals and alloys,
004	Nano-composites and carbon nanotubes.
CO5	To make the students understand about the effects of using nanoparticles over
	conventional methods

		11 0					1 0					
Course					P	rogran	o Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		3	3	2	1		3		1	3
CO2	3	2			3	3	2				1	3
CO3	1	1	1	3	2				2	1		1

CO4	1	1		3	3	2	1	3		1	3
CO5	1	1	1	3	2			2	1		1

Course Contents:

Unit 1: Scientific Revolutions

[07 Hours]

Types of Nanotechnology and Nano machines: the Hybrid nanomaterial. Multiscale hierarchical structures built out of Nano sized building blocks (nano to macro). Nanomaterial's in Nature: Nacre, Gecko, Teeth. Periodic table, Atomic Structure, Molecules and phases, Energy, Molecular and atomic size, Surfaces and dimensional space: top down and bottom up.

Unit 2: Forces between Atoms and Molecules

[07 Hours]

Particles and grain boundaries, strong Intermolecular forces, Electrostatic and Vander Waals forces between surfaces, similarities and differences between intermolecular and inter particle forces covalent and coulomb interactions, interaction polar molecules.

Thermodynamics of self-assembly.

Unit 3: Opportunity at the Nano Scale

[07 Hours]

Length and time scale in structures, energy landscapes, Inter dynamic aspects of inter molecular forces, Evolution of band structure and Fermi surface.

Unit 4: Nano Shapes

[07 Hours]

Quantum dots, Nano wires, Nano tubes, 2D and 3D films, Nano and mesopores, micelles, bilayer, vesicles, bio nano machines, biological membranes.

Unit 5: Influence of Nano Structuring and Nano Behavior

[07 Hours]

Influence of Nano structuring on mechanical, optical, electronic, magnetic and chemical properties-gram size effects on strength of metals- optical properties of quantum dots.

Nano Behavior

Quantum wires, electronic transport in quantum wires and carbon nano-tubes, magnetic behavior of single domain particles and nanostructures, surface chemistry of Tailored monolayer, self-assembling.

Texts:

- 1. C. Koch, "Nanostructured materials: Processing, Properties and Potential Applications", Noyes Publications, 2002.
- 2. C. Koch, I. A. Ovidko, S. Seal and S. Veprek, "Structural Nano crystalline Materials: Fundamentals & Applications", Cambridge University Press, 2011.

References:

1. Bharat Bhushan, "Springer Handbook of Nanotechnology", Springer, 2nd edition, 2006.

2. Laurier L. Schramm, "Nano and Microtechnology from A-Z: From Nano-systems to Colloids and Interfaces", Wiley, 2014.

Energy Conservation and Management

BTMOE605C	OEC2	Energy Conservation and Management	3-1-0	4 Credits
-----------	------	---------------------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand energy problem and need of energy management
CO2	Carry out energy audit of simple units
CO3	Study various financial appraisal methods
CO4	Analyze cogeneration and waste heat recovery systems
CO5	Do simple calculations regarding thermal insulation and electrical energy conservation

		<u> </u>	I Cour	oc out	COMILED	******	<u> </u>	· · · · · · · · · · · · · · · · · · ·	COMME	<u>′</u>		
Course					Pı	ogram	Outco	omes		·		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3		2	3			2	2		2
CO2	1	1	3	1	2	3			2	2		2
CO3	2	1	1							1		2
CO4	3	3			2	3						1

CO5		3		2			1

Course Contents:

Unit1: Introduction [07 Hours]

General energy problem, Energy use patterns and scope of conservation. Energy Management Principles: Need, Organizing, Initiating and managing an energy magnet program.

Unit2: Energy Auditing

[07 Hours]

Elements and concepts, Types of energy audits, Instruments uses in energy auditing . Economic Analysis: Cash flows, Time value of money, Formula are relating present and future cash flows-single amount, uniform series.

Unit3: Financial Appraisal Methods

[07 Hours]

Payback period, Net present value, Benefit-cost ratio, Internal—rate of return, Lifecyclecosts/benefits. Thermodynamicsofenergyconservation, Energyconservation in Boilers and furnaces, Energy conservation in Steam and condensate system.

Unit4: Cogeneration and Insulation and Heating

[07 Hours]

Concept, Types of cogeneration systems, performance evaluation of a cogeneration system. Waste Heat Recovery: Potential, benefits, waste heat recovery equipment's. Space Heating, Ventilation Air Conditioning (HVAC) and water heating of building, Transfer of heat, Space heating methods, Ventilation and air conditioning, Heat pumps, Insulation, Cooling load, Electric water heating systems, Electric energy conservation methods.

Insulation and Heating Industrial Insulation: Insulation materials, Insulation selection, Economical thickness of insulation.Industrial Heating: Heating by indirect resistance, direct resistance heating (salt bath furnace),andHeat treatment by induction heating in the electric arc furnace industry.

Unit5: Energy Conservation in Electric Utility and Industry

[07 Hours]

Energy costs and two part tariff, Energy conservation in utility by improving load factor, Load curve analysis, Energyefficient motors, Energy conservation in illumination systems, Importance of Rwefact orine energy conservation, Power factor improvement methods, Energyconservation in industries

Texts:

- 1. Callaghan, "Energy Conservation".
- 2. D.L. Reeg, "Industrial Energy Conservation", Pergamon Press.

References:

- 1. T.L. Boyen, "Thermal Energy Recovery", Wiley Eastern.
- 2. L.J. Nagrath, "System Modeling and Analysis", Tata Mc Graw Hill Publications.
- 3. S.P. Sukhatme, "Solar Energy", Tata Mc Graw Hill Publications.

Wind Energy

ε_{i}	BTMOE605D	OEC2	Wind Energy	3-1-0	4 Credits
-------------------	-----------	------	-------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand historical applications of wind energy
CO2	Understand and explain wind measurements and wind data
CO3	Determine Wind Turbine Power, Energy and Torque
CO4	Understand and explain Wind Turbine Connected to the Electrical Network AC and DC
CO5	Understand economics of wind energy

	Course					Pı	ogram	Outco	mes				
	Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Γ	CO1							2	2	2	1		1

CO2		3	2	1	3	2	2	2	2		1
CO3	3	3	1	1	2	2	1				1
CO4	3	3		1							1
CO5	3	2	1								1

Course Contents:

Unit 1: Introduction and Wind Measurements

[07 Hours]

Historical uses of wind, History of wind electric generations

Wind Characteristics: Metrology of wind, World distribution of wind, Atmospheric stability, Wind speed variation with height, Wind speed statistics, Weibull statistics, Weibull parameters, Rayleigh and normal distribution

Wind Measurements

Biological indicators, Rotational anemometers, other anemometers, Wind direction

Unit 2: Wind Turbine Power, Energy and Torque

[07 Hours]

Power output from an ideal turbine, Aerodynamics, Power output from practical turbines, Transmission and generation efficiency, Energy production and capacity factor, Torque at constant speeds, Drive train oscillations, Turbine shaft power and torque at variable speeds.

Unit 3: Wind Turbine Connected to the Electrical Network

107 Hours

Methods of generating synchronous power, AC circuits, the synchronous generator, per unit calculations, the induction machine, motor starting, Capacity credit features of electrical network

Unit 4: Wind Turbines with Asynchronous Electric Generators

07 Hours

Asynchronous systems, DC shunt generator with battery load, Per unit calculation, Self-excitation of the induction generators, Single phase operation the induction generator, Field modulated generators, Roesel generator.

Asynchronous Load: Piston water pumps, Centrifugal pumps, Paddle wheel heaters, Batteries, Hydrogen economy, and Electrolysis cells.

Unit 5: Economics of Wind Systems

[07 Hours]

Capital costs, Economic concepts, Revenues requirements, Value of wind generated electricity

Texts:

1. S. Ahmad, "Wind Energy: Theory and Practice", Prentice Hall of India Pvt. Ltd.

References:

- 1. Garg L. Johnson, "Wind Energy Systems" Prentice Hall Inc., New Jersey, 1985.
- 2. Desire Le Gouriers, "Wind Power Plants: Theory and Design" Pergamon Press, 1982.

Introduction to Probability Theory and Statistics

BTMOE605D	Introduction to Probability Theory and Statistics	OEC 2	3L-1T-0P	4 Credits	
-----------	---	-------	----------	-----------	--

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial:1 hrs/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Objective

The objective of this course is

- (i) To acquire the knowledge of mean, median, mode, dispersion, etc.
- (ii) To develop the basics of Probability theory
- (iii) To get the knowledge of random variables and their expectations
- (iv) To establish acquaintance with various probability distributions
- (v) To Acquire the knowledge of correlation and regression.

Course Outcome

At the end of the course, the student will be able to

- (i) Apply the concepts to find the measure of the central tendency, dispersion and moments forgrouped data
- (ii) Make use of the correlation, and regression analyses to find the correlation and regression Coefficients
- (iii) Observe and analyze the behavior of various discrete and continuous probabilityDistributions
- (iv)Investigate the properties such as mathematical expectation and variance of the random Variables.

Mapping of course outcomes with program outcomes

Course					Pı	rogram	Outco	mes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	2	2	1			1	1		2
CO2	1	1		2	1		1					2
CO3	1	2		2	2	1				2		2
CO4	1	1	1	3	3	1			1			2

Course Contents:

Unit I: Probability

[07 Hours]

Probability Theory: Definition of probability, Addition theorem of probability, Multiplication theorem of probability, Conditional probability, Bayes' theorem of inverse probability, Properties of probabilities with proofs.

Unit II: Theoretical Probability Distributions

[07 Hours]

Theoretical Probability Distributions: Binomial distribution, Poisson distribution, Normal

distribution, Fitting of binomial distributions, Properties of Binomial, Poisson and normal distributions, Relation between binomial and normal distributions, Relation between Poisson and normal distributions, Importance of normal distribution, Examples.

Unit III: Moments, Skewness and Kurtosis

[07 Hours]

Moments about mean and an arbitrary point; Skewness: positive skewness, negative skewness, symmetric frequency distribution, Bowley's coefficient of skewness, Karl Pearson's coefficient of skewness,

Measures of skewness based on moments (β_1 , γ_1); Concepts of kurtosis, leptokurtic, mesokurtic and platykurtic frequency distributions.

Unit IV: Correlation and Regression

[07 Hours]

Correlation: Types of correlation, Karl Pearson's correlation coefficient (Covariance Method), Spearman's rank correlation method, Regression: lines of regression, fitting of lines of regression by the least squares method, interpretation of slope and intercept, properties of regression coefficients.

Unit V: Sampling Theory and Testing of Hypothesis[07 Hours]

Introduction to sampling distributions, Population and sample, Null hypothesis and Alternative hypothesis, Single and two tailed test, Testing of hypothesis, Level of significance, Critical region, Procedure for testing of hypothesis.

Text Books:

- 1. Fundamentals of Statistics by S. C. Gupta, Himalaya Publishing House Pvt. Ltd., New Delhi
- 2. Probability and Statistics by Dr. B. B. Singh, Synergy Knowledge ware, Mumbai.
- 3. Mathematical Statistics by P. Mukhopadhyay, New Central Book Agency, Kolkata.
- 4. Fundamentals of Mathematical Statistics by S. C. Gupta and V. K. Kapoor, S. Chand and Sons, New Delhi.
- 5. An Introduction to Probability and Statistics by V. K. Rohatgi and A. K. Md. Ehsanes Saleh, Wiley Intercedence Publication, New York.
- 6. Introduction to Probability and Statistical Applications by P. L. Meyer, Addison Wesley Publishing Co., Massachusetts.

Reference Books:

- a. Probability, Statistics with Reliability, Queuing and Computer Science Applications by KishorS. Trivedi, Wiley India Pvt. Ltd., Mumbai.
- b. Probability, Queuing Theory and Reliability Engineering by G. Hari baskaran, Laxmi

Publications, New Delhi.

c. Probability and Statistics by R. S. Murray, J. S. John, R. Alu Srinivasan and D. Goswami,

Schaum's Outlines series, McGraw Hill Publications, New Delhi.

d. Introduction to Theory of Statistics by A. M. Mood, F. A. Graybill and D. C. Boes, tata McGraw – Hill Publications, Pune.

Mechanical Engineering Lab – IV

BTMCL 606	PCC 18	Manufacturing Processes Lab - II+ +Machine Design Practice-II+ Applied	0-0-6	3 Credit
-----------	--------	---	-------	----------

Thermodynamics lab	

Practical Scheme:	Examination Scheme:
Practical: 6 hrs/batch	Continuous Assessment: 30 Marks
	End Semester Exam: 20 Marks

Group A (Manufacturing Processes Lab - II)

List of Practical's /Experiments/Assignments (Any Three from Group

A)

- 1. Study of types of chips
- 2. Study of the effect of process parameters on cutting ratio and shear angle in oblique turning process
- 3. Study of the effect of process parameters on the surface roughness during oblique turning process
- 4. Study of the effect of cutting fluid on surface roughness during oblique turning process
- 5. Study of the effect of process parameters on tool wear during oblique turning process
- 6. Study of the effect of process parameters on cutting forces in oblique turning process
- 7. Study of the effect of process parameters on cutting forces in end milling process
- 8. To develop a manual part program of a given component on CNC Lathe using G and M codes.
- 9. To develop a manual part program of a given component on CNC Lathe usingstock removal cycle.
- 10. To develop a manual part program of a given component on CNC Lathe using canned cycle.
- 11. To develop a manual part program of a given component on CNC Milling machine using G and M code.
- 12. To develop a manual part program of a given component on CNC Milling machine using pocket milling cycle.
- 13. To develop a manual part program of a given component on CNC Milling machine using scanned cycle.
- 14. To examine the effect of parameters on MRR and TWR in Electro Discharge Machining (EDM).
- 15. To evaluate machining accuracy in EDM.
- 16. Demonstration on Wire-EDM
- 17. Industrial visit to study manufacturing practices.

Group B (Machine Design Practice - II)

List of Practical's/Experiments/Assignments

- 1. The term work shall consist of 01 design projects based on syllabus of Machine Design-II. Design project shall consist of 2 full imperial size sheets-one involving assembly drawings with apart list and Overall dimensions and other sheet involving drawing so find Individual Components. Manufacturing tolerances, surface finish symbols and geometric tolerances should be specified, where ever necessary, so as to make it a working drawing Make the Project full on Auto-cad or on any 3D Design software print the full sheet on A3 size paper.
- 2. A design report giving all necessary calculations for the design of components and assembly should be submitted in a separate file. Sheets for one of the projects will be drawn using AutoCAD and computer printout using plotter of the same will be attached along with the design report.
- 3. At least two assignments based on topics of syllabus of Machine Design-II.

Group C (Elective - III)

Perform any FIVE Practical's/ Assignments

- 1. Determination of calorific value by Bomb calorimeter
- 2. Measurement of dryness fraction of steam using separating & throttling calorimeter.
- 3. Trial on boiler
- 4. Trial on convergent/convergent-divergent type nozzle
- 5. Performance evaluation of steam turbine (Reaction / Impulse).
- 6. Performance evaluation of surface condenser.
- 7. Flue gas analysis using emission measuring instruments
- 8. Study & trial on single stage/two-stage reciprocating air compressor
- 9. Trial on centrifugal blower
- 10. Visit to appropriate industry to study and experience some of the above listed systems

B. Tech Seminar

	BTMS607	Seminar II	PROJ-3	0L-0T-2P	1 Credits
--	---------	------------	--------	----------	-----------

Teaching Scheme:	Examination Scheme:
Practical: hrs/week	Continuous Assessment: 60 Marks
	Mid Semester Exam:
	End Semester Exam: 40 Marks

Objective:

- To expose and make students aware with latest research and research publications
- To understand the research and research publication, references, citation
- To enhance the presentation skill
- To enhance the report writing

• To make the student aware about research publication sites Students are expected to prepare a seminar report on the chosen topic/area

selected with the discussion of chosen guide based on the available literature on the chosen topic.

Mini Project (TPCS)

BTAP608	Mini Project (TPCS)	PROJ-4	0L-0T-2P	1 Credits
---------	---------------------	--------	----------	-----------

Teaching Scheme:	Examination Scheme:
Practical: 2 hrs/week	Continuous Assessment: 60 Marks
	Mid Semester Exam:
	End Semester Exam: 40 Marks(Duration 03 hrs)
	, , ,

Students are expected to carry out a mini project under a project guide based on the chosen area. The project may be prototype/software based which may demonstrate Engineering application or community service. After completion the project work it is necessary that student should prepare a project report under the supervision of the assign guide and present before the committee.