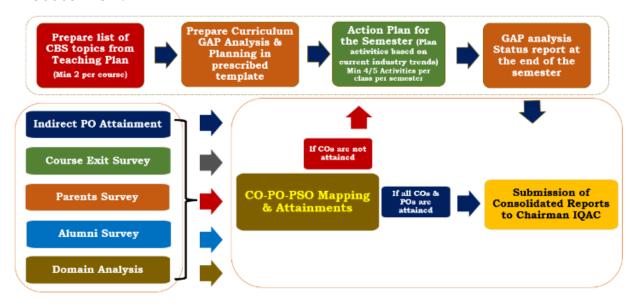


BAJAJ INSTITUTE OF TECHNOLOGY, PIPRI, WARDHA

CRITERION-II


Metric: 2.6.2

Attainment of POs and COs are evaluated

Attainment of POs and COs are evaluated.

Bajaj Institute of Technology believes in outcome-based education since its inception. The first batch is passed out in 2020-21. Due to pandemic and online nature of content delivery, evaluation of CO-PO attainment is started from 2020-21 (For 2019-20 Batch).

Process Flow:

Method of Measuring Attainment of CO:

Course CO attainment is measured based on students scores and set CO targets.

The CO targets are set by IQAC for all the courses in the program based on performance of students in internal and external examinations such as Continuous Assessment (CA), Mid Semester Examinations (MSE) and End Semester Examination (ESE). If the targets are achieved then all the COs are attained. If the set target is not achieved (≥ 30 % of set target), then the department prepares an action plan. These courses also have a priority while planning and preparing curriculum GAP analysis in subsequent years.

For evaluating CO attainments ERP portal (R-Work) is used for all the courses.

Following table shows Assessment tools, criterion and process.

S. No	Assessment Tool	Assessment Criterion	Process for data collection
1.	Continuous Assessment (CA-I)	CA-I is based on defined assessment parameters. Its assessment is based on defined rubrics for	based parameters and the score of the
		various parameters.	
2.	Continuous Assessment (CA-II)	CA-II is based on defined assessment parameters. Its assessment is based on defined rubrics for various parameters	based parameters and the score of the

3.	Mid Semester Examination (MSE)	MSE is based on first two/three units of the syllabus. Three Questions are asked based on the syllabus.	sheets and the score of
4.	End Semester Examination (ESE)	ESE is as per affiliating university schedule and on complete syllabus.	
5.	Lab Assessment CA-I & II and Oral Examination	CA-I and II is based on defined assessment parameters for laboratory work. Its assessment is based on defined rubrics for various parameters. Practical oral examination is as per affiliating	based parameters and the score of the students. Evaluation of rubrics-
		university schedule and on complete syllabus.	l -
6.	Project/Seminar /Mini Project	Review seminars are conducted for continuous assessment and evaluation.	

Method of Measuring Attainment of PO and PSO:

PO attainment levels are evaluated based on Direct Attainment Method and Indirect attainment method.

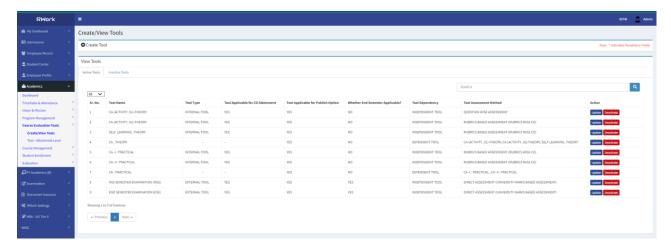
	Assessment & Evaluation Method	Assessment and Evaluation Tool	Source	Frequency
PO/ PSO	Direct Assessment (80 %)	Internal Assessment (CA) Mid Semester & End Semester Examinations	CO Attainment Level	Throughout the Semester After results declaration
	Indirect Assessment (20%)	Course Exit Survey Indirect PO Attainment	Attainment Level from the survey form	
		Parents Feedback		End of Semester

Internal Quality Assurance Cell reviews all COs of the courses which are relevant to corresponding POs. The task is to review the course outcome assessment results towards PO assessment for each course and to draw conclusion on how the program outcomes are attained. CO-PO attainment levels are thoroughly viewed and action taken report is prepared and is submitted to the IQAC for further comments and necessary action. Based on the suggestions, department prepares action plan in the subsequent year and submits the same to IQAC Chairman for approval.

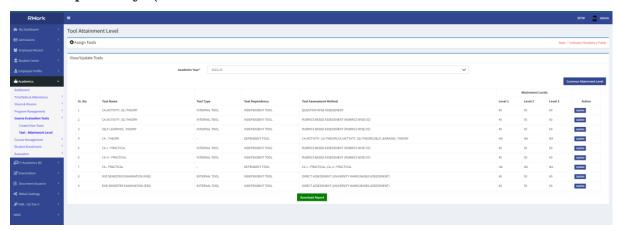
Example:

The PO and PSO attainments are calculated for complete batch of students which progresses through all the courses of a particular program including the project work. The attainment is calculated based upon the correlation level, i.e., low-moderate-high, of a particular course/CO/ activity with respect to the PO or PSO in the scale of 1-3.

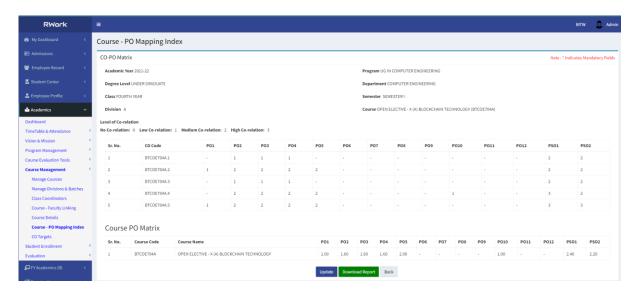
Direct PO attainment is calculated from CO attainment of the courses addressing corresponding PO.


It is decided to have more indirect tools from 2023-24. These are

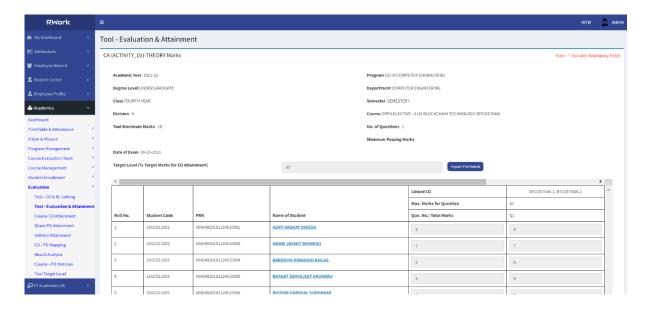
- Domain wise analysis and attainment
- Alumni Survey
- Employer Feedback

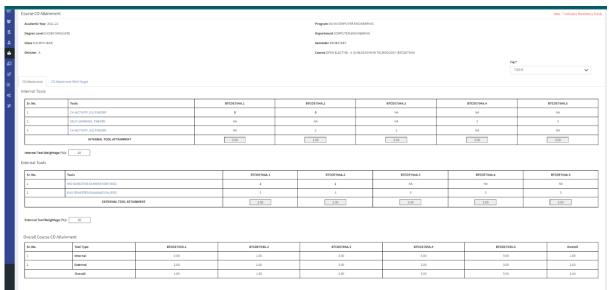

	Assessment & Evaluation Method	Assessment and Evaluation Tool	Source	Frequency			
PO/	Direct Assessment (80%)	Internal Assessment (CA)	СО	Throughout the Semester			
		Mid Semester & End Semester Examinations	Attainment Level	After results declaration			
PSO	Indirect Assessment (20%)	Course Exit Survey		End of Academic Year			
		Indirect PO Attainment	Attainment Level from	End of Semester			
		Parents Feedback	the survey	End of Semester			
		Domain Analysis	form	End of Academic Year			
		Alumni Survey		End of Academic Year			
		Employer Survey		End of Academic Year			

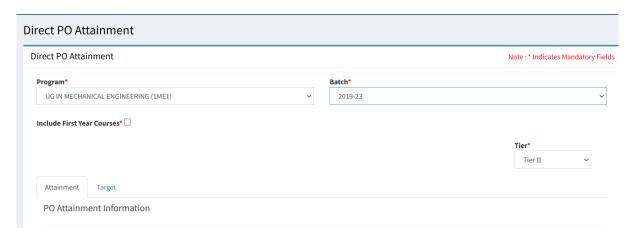
The method is as follows:

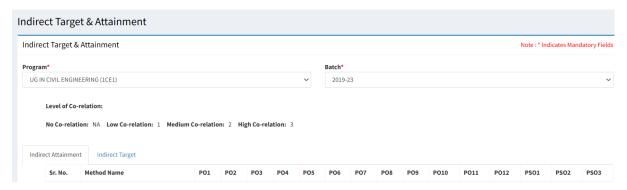

1. Define independent and dependent tools along with assessment method.

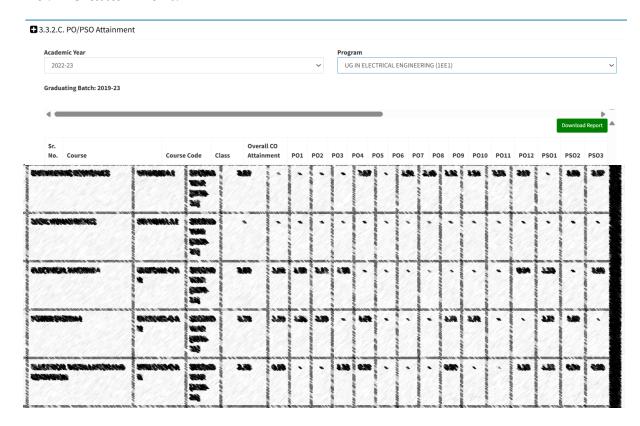
2. Set attainment level as 40, 50 and 60 as level 1, level 2 and level 3 respectively. (Common for all the courses in that AY.


3. Complete the course PO mapping of all the courses.


4. Assign CO targets for all the independent tools for the course.


5. Enter Tool Targets and marks


6. View CO attainments of all the assign courses in AY.


7. View Direct PO attainment of a batch.

8. Create indirect tools (Course Exit Survey, Parents Feedback and Indirect PO attainment) for PO attainment.

9. PO attainment.

After CO attainment levels are tabulated for every course in the semester corresponding POs are evaluated

Depart	ment of Mechanical Engineering		Mapping of all the Courses with POs & PSOs				2019-2	20)								
Semester	Name of the Course/Subject	Course CO Attainment	PO1	P02	P03	PO4	PO5	PO6	P07	PO8	PO9		P011		PS01	PSO
III Seme	ester															
1	ENGINEERING MATHEMATICS-III	2.72	2.25	2.00	1.00										1.50	
2	MATERIALS SCIENCE AND METALLURGY	2.71	1.67	1.50	1.67	2.00	1.80	1.00	1.67	1.00	1.00	1.00			2.00	2.0
3	FLUID MECHANICS	2.61	2.71	3.00	1.33	1.33	1.00							1.00	1.71	1.0
4	MACHINE DRAWING AND CAD	2.23	1.67	1.25			1.00				2.17	1.33		1.00	2.17	1.0
5	THERMODYNAMICS	2.52	1.25	1.25	1.00										1.40	1.4
6	MATERIALS SCIENCE AND METALLURGY LAB	2.66	1.60	1.40	1.80	2.00	1.80	1.00	1.67	1.00	1.00	1.00			2.00	2.0
7	FLUID MECHANICS LAB	2.42	1.00	1.00	1.00	3.00	1.00				1.00	2.00		1.00	1.29	2.0
8	MACHINE DRAWING AND CAD LAB	2.66	1.67	1.25			1.00				2.17	1.33		1.00	2.17	1.0
9	FIELD TRAINING /INTERNSHIP/INDUSTRIAL TRAINING I	2.66		1.00	1.00		2.00		1.00			3.00	2.50		2.50	2.5
IV Seme	ester															
10	MANUFACTURING PROCESSES-I	2.35	1.50	1.33	1.00		1.00	1.00				1.00		1.00	1.60	1.6
11	THE ORY OF MACHINES-I	1.93	1.00	1.00		1.80								2.60	1.33	2.2
12	STRENGTH OF MATERIALS	2.20	1.00	1.40	2.00	1.80		1.00		1.00				2.20	3.00	1.4
13	NUMERICAL METHODS IN MECHANICAL ENGINEERING	1.67	3.00	3.00		1.00	3.00								2.00	2.0
14	INTE RPERSONAL COMMUNICATION SKILL& SELF DEVELOPMENT	2.70								1.00	1.00	2.00	3.00	2.00	2.00	1.0
15	MANUFACTURING PROCESSES LAB-I	2.66	1.33	1.00		3.00	1.00		1.00		1.00	1.83		1.00	1.00	1.0
16	THEORY OF MACHINES LAB- I	2.34	1.00	1.00		2.25								2.50	1.50	2.5
17	STRENGTH OF MATERIALS LAB	2.02	1.00	1.00	2.00	2.00		1.00		1.00				2.25	3.00	1.2
18	NUMERICAL METHODS LAB	2.66	3.00	3.00		1.00	3.00								2.00	2.0
V Seme	ster															
19	HE AT TRANSFER	0.63	2.67	2.17	3.00	1.50	1.33		2.00		1.00				1.50	1.6
20	APPLIED THERMODYNAMICS-I	2.27	1.00	1.67	1.00										1.20	1.2
21	MACHINE DESIGN-I	2.45	1.83	1.67	2.00	1.00		1.20		1.00		1.00		1.00	2.17	1.5
22	THE ORY OF MACHINES-II	2.29	2.00	2.67	1.00	2.00	2.00		1.00			2.00		2.60	1.50	1.8
23	METROLOGY AND QUALITY CONTROL	2.49	1.00	2.00	2.00	3.00	2.00	2.33		3.00	3.00		2.50	2.00	2.17	1.5
24	HE AT TRANSFER LAB	1.09	2.67	3.00		3.00	2.00		2.00						1.33	2.0
25	APPLIED THERMODYNAMICS LAB	1.01	1.33	1.33	1.00	1.75	1.00	1.00				2.00		2.00	2.20	2.0
26	MACHINE DESIGN PRACTICE- I	0.37	2.00	2.20	2.00	1.40		1.00	1.33	1.00	1.50	2.00	2.00	1.50	2.43	1.4
27	THE ORY OF MACHINE'S LAB-II	2.38	2.25	2.50	1.00	2.50	2.50		2.00					3.00	1.00	1.0
28	FIELD TRAINING /INTERNSHIP/INDUSTRIAL TRAINING II	2.77		1.00	1.00			2.00		1.00			3.00	2.50	2.50	2.0

				71.64	
4.90	54.81 61	43	63, 43 58, 36	59.08	
	57.03	62.03 50	0.33		60.17
50.73		48.33			
		1		-	
-					-
		ш			ш

53 FUNDAMENTALS OF AUTOMOTIVE SYSTEMS
54 NON-CONVENTIONAL ENERGY RESOURCES
55 PROJECT STAGE-II OR INTERNSHIP AND PROJE

Batch 2019-20 Average PO Attainment 57.68

IQAC-Coordinator Prepared By

 2.65
 1.33
 1.20
 3.00
 2.60
 3.00
 3.00
 2.33

 0.90
 1.67
 2.00
 2.00
 2.50

 2.75
 1.00
 1.00
 2.00
 1.50
 1.67
 1.33
 1.50

