ENVIRONMENTAL AUDIT REPORT

of

Shiksha Mandal's BAJAJ INSTITUTE OF ENGINEERING, PIPRI WARDHA

Year: 2022-23

Prepared by:

ENGRESS SERVICES

Yashashree, 26, Nirmal Bag Society Near Muktangan English School, Parvati, Pune 411009 Phone: 09890444795 Email: engress123@gmail.com

ENGRESS SERVICES

Yashashree, 26, Nirmal Bag Society, Near Muktangan English School, Parvati, Pune 411 009 Tel: 09890444795 Email: <u>engress123@gmail.com</u> MEDA Registration No: ECN/2022-23/CR-43/1709 ISO: 9001-2015 Certified (Cert No: 23EQKC13), ISO: 14001-2015 Certified (Cert No: 23EEKW20)

ENVIRONMENTAL AUDIT CERTIFICATE

Certificate No: ES/BIT/22-23/03

Date: 20/05/2023

This is to certify that we have conducted Environmental Audit at Bajaj Institute of Technology, Pipri Wardha, in the Year 2022-23.

The Institute has adopted following Energy Efficient & Green Practices:

- Usage of Energy Efficient LED Light Fitting
- Installation of Solar Thermal Water Heating System
- Segregation of Waste at Source
- Installation of Sanitary Waste Incinerator
- Installation of Bio Composting Pit
- Installation of Sewage Treatment Plant
- Installation of Rain Water Management Project
- Maintenance of good Internal Road
- Tree Plantation in the campus
- Provision of Ramp for Divyangajan
- > Creation of awareness by display of Posters on Resource Conservation

We appreciate the support of Management, involvement of faculty members and students in the process of Energy Conservation & making the Eco Friendly.

For Engress Services,

A Y Mehendale, B E- Mech, M Tech-Energy, Certified Energy Auditor, EA-8192 ASSOCHAM GEM Certified Professional: GEM: 22/788

MEDA Registration Certificate

ISO: 9001-2015 Certificate

GEM Certified Professional Certificate

ISO: 14001-2015 Certificate

SE

Page 3

Sr. No	Particulars	Page No
1	Acknowledgement	5
II	Executive Summary	6
	Abbreviations	8
1	Introduction	9
2	Study of Resource Consumption & CO ₂ Emission	11
3	Study of Usage of Renewable Energy	13
4	Study of Indoor Air Quality	14
5	Study of Indoor Comfort Condition Parameters	16
6	Study of Waste Management	17
7	Study of Rain water Harvesting	19
8	Study of Environment Friendly Initiatives	20
	Annexure	
I.	Various Standards in respect of Indoor Air Quality, Water, Noise & Indoor Comfort Condition	21

age

INDEX

ACKNOWLEDGEMENT

We Engress Services, Pune, express our sincere gratitude to the management of Bajaj Institute of Technology, Pipri Wardha for awarding us the assignment of Environmental Audit of their Campus for the Year: 2022-23.

FR

age 5

We are thankful to all the staff members for helping us during the field study.

EXECUTIVE SUMMARY

- Bajaj Institute of Technology, Pipri Wardha consumes Energy in the form of Electrical Energy used for various Electrical Equipment, office & other facilities.
- 2. Pollution due to Institute Activities:
 - Air pollution: Mainly CO₂ on account of Electricity Consumption
 - Solid Waste: Bio degradable Garden Waste
 - Liquid Waste: Human liquid waste

3. Present Energy Consumption & CO₂ Emission:

No	Particulars	Value	Unit
1	Annual Energy Consumption	129622	kWh
2	Annual CO ₂ Emissions	116.66	MT

4. Various initiatives taken for Environmental Conservation:

- Usage of Energy Efficient LED fittings
- Installation of Solar Thermal Water Heating System
- Installation of Sewage Treatment Plant

5. Indoor Air Quality Parameters:

No	Parameter/Value	AQI	PM-2.5	PM-10
1	Maximum	50	31	42
2	Minimum	33	20	23

6. Indoor Comfort Conditions:

No	Parameter/Value	Temperature, °C	Humidity, %	Lux Level	Noise Level, dB
1	Maximum	30.1	46	310	43
2	Minimum	26.4	42	210	39

7. Waste Management:

7.1 Segregation of Waste at Source:

The Waste is segregated at source in separate Waste Bins & is handed over for further action.

7.2 Bio Composting Pit:

The Institute has a Bio Composting Pit, to convert the Leafy Waste into Bio Compost.

7.3 Liquid Waste Management:

The Institute has installed Sewage Treatment Plant. The treated Water is used for gardening purpose.

7.4 Sanitary Waste Management:

The Institute has installed Sanitary Waste Incinerator, for disposal of the Sanitary Waste.

7.5 E Waste Management:

It is recommended to dispose of the E Waste through Authorized Agency.

8. Rain Water Management:

The Institute has installed the Rainwater Management project; the rain water falling on the terrace is collected through pipes and is used for recharging the land water table.

9. Environment Friendly Initiatives:

- Maintenance of Internal Garden: About 3000 Plus Trees in the campus.
- > Display of Posters on Resource Conservation

10. Assumption:

1. 1 kWh of Electrical Energy releases 0.9 Kg of CO2 into atmosphere

11. References:

- For CO₂ Emissions: <u>www.tatapower.com</u>
- For Various Indoor Air Parameters: www.ishrae.com
- For AQI &Water Quality Standards: www.cpcb.com

ABBREVIATIONS

Kg	12	Kilo Gram
MSEDCL		Maharashtra State Distribution Company Limited
MT		Metric Ton
kWh	:	kilo-Watt Hour
LPD	:	Liters per Day
LED	1	Light Emitting Diode
AQI	4	Air Quality Index
PM-2.5	-	Particulate Matter of Size 2.5 Micron
PM-10	-	Particulate Matter of Size 10 Micron
CPCB	1	Central Pollution Control Board
ISHRAE	3	The Indian Society of Heating & Refrigerating & Air Conditioning Engineers

CHAPTER-I INTRODUCTION

1. Important Definitions:

1.1. Environment: Definition as per environment Protection Act: 1986

Environment includes water, air and land and the inter-relationship which exists among and between Water, Air, Land and Human beings, other living creatures, plants microorganism and property

1.2. Environmental Audit: Definition:

An audit which aims at verification and validation to ensure that various environmental laws are compiled with and adequate care has been taken towards environmental protection and preservation

According to UNEP, 1990, "Environmental audit can be defined as a management tool comprising systematic, documented and periodic evaluation of how well environmental organization management and equipment are performing with an aim of helping to regularize the environment

1.3. Environmental Pollutant: means any solid, liquid and gaseous substance present in the concentration as may be, or tend to be, injurious to Environment.

1.4 Audit Procedural Steps:

Institute Campus

Page

1.5 Institute Location Image:

CHAPTER-II STUDY OF RESOURCE CONSUMPTION & CO₂ EMISSION

The Institute consumes following basic/derived Resources:

- 1. Air
- 2. Water
- 3. Electrical Energy

We try to draw a schematic diagram for the Institute System & Environment as under. Chart No 1: Representation of Institute as System & Study of Resources & Waste

Now we compute the Generation of CO₂ on account of consumption of Electrical Energy. The basis of Calculation for CO₂ emissions due to Electrical Energy is as under.

1 kWh of Electrical Energy releases 0.9 Kg of CO₂ into atmosphere

Table No 5: Study of Consumption of Electrical Energy & CO2 Emissions: 22-23:

No	Month	Energy Consumed, kWh	CO2 Emissions, MT
1	Apr-22	9039	8.13
2	May-22	6626	5.96
3	Jun-22	6940	6.24
4	Jul-22	7371	6.63
5	Aug-22	7192	6.47
6	Sep-22	7576	6.81
7	Oct-22	8299	7.46
8	Nov-22	8944	8.04

Page

9	Dec-22	7786	7.00
10	Jan-23	18092	16.28
11	Feb-23	23344	21.00
12	Mar-23	18413	16.57
13	Total	129622	116.66
14	Maximum	23344	21.00
15	Minimum	6626	5.96
16	Average	10801.8	9.721

Chart No 2: Month wise CO2 Emissions:

Table No 6: Important Parameters:

No	Parameter/ Value	Net Energy Consumption (kWh)	CO2 Emissions MT
1	Total	129622	116.66
2	Maximum	23344	21.00
3	Minimum	6626	5.96
4	Average	10801.8	9.721

Page

CHAPTER III STUDY OF USAGE OF RENEWABLE ENERGY

The Institute has installed Solar Thermal Water Heating System at the Hostel Blocks as well as Staff Quarters.

It is recommended to install Roof Top Solar PV Plant.

The details of Solar Thermal Water Heating Capacities are:

On Girls Hostel Block: 2000 LPD

Photograph of Solar Thermal Water Heating System:

CHAPTER IV STUDY OF INDOOR AIR QUALITY

4.1 Importance of Air Quality:

Air: The common name given to the atmospheric gases used in breathing and photosynthesis.

By volume, Dry Air contains 78.09% Nitrogen, 20.95% Oxygen, 0.93% Argon, 0.039% carbon dioxide, and small amounts of other gases.

On average, a person inhales about 14,000 liters of air every day. Therefore, poor air quality may affect the quality of life now and for future generations by affecting the health, the environment, the economy and the city's livability.

Air quality is a measure of the suitability of air for breathing by people, plants and animals.

4.2 Air Quality Index:

An Air Quality Index (AQI) is a number used by government agencies to measure the air pollution levels and communicate it to the population. As the AQI increases, it means that a large percentage of the population will experience severe adverse health effects. The measurement of the AQI requires an air monitor and an air pollutant concentration over a specified averaging period.

We present herewith following important Parameters.

- 1. AQI- Air Quality Index
- 2. PM-2.5- Particulate Matter of Size 2.5 micron
- 3. PM-10- Particulate Matter of Size 10 micron

Table No 7: Indoor Air Quality Parameters:

No	Location	AQI	PM-2.5	PM-10
	Ground Flo	oor		
1	Class Room (GFB-05)	46	30	32
2	Tutorial Room (GFB-07)	46	27	42
3	Faculty Room	50	30	42
4	RAC Lab	46	28	42
5	Fluid Power Lab	35	21	26
6	Admin Office	46	27	26
7	Seminar Hall	47	27	32
	First Floo	r	-	
8	Class Room (FFB-01)	45	23	37
9	Computer Centre	45	23	37
10	Robotics & Mech.Lab	50	31	42
11	Class Room (FFB-05)	35	21	27
12	Applied Mechanics Lab	36	22	26

Page

13	Principal Office	35	21	25	
14	Drawing Hall	35	22	23	
	Second FI	oor			
15	Class Room (SFB-01)	33	20	30	
16	Class Room (SFC-09)	46	28	39	
17	Computer Centre	48	27	34	
18	Language Lab	33	20	28	
19	TOM Lab	41	24	31	
20	Class Room (SFB-09)	40	25	31	
21	Seminar Hall (SFB-12)	41	27	33	
22	Class Room (SFB-11)	40	28	32	
23	Maximum	50	31	42	
24	Minimum	33	20	23	

ade

CHAPTER V STUDY OF INDOOR COMFORT CONDITION PARAMETERS

In this Chapter, we present the various Indoor Comfort Parameters measured during the Audit. The Parameters include:

- 1. Temperature
- 2. Humidity
- 3. Lux Level
- 4. Noise Level.

Table No 8: Study of Indoor Comfort Condition Parameters:

No	Location	Temperature, °C	Humidity, %	Lux Level	Noise Level, dB
		Ground Flo	or		
1	Class Room (GFB-05)	27	42	280	41
2	Tutorial Room (GFB-07)	28	44	240	41.2
3	Faculty Room	27	44	210	41.3
4	RAC Lab	27	44	230	40
5	Fluid Power Lab	27	45	245	41
6	Admin Office	28.2	45	250	41
7	Seminar Hall	30.1	44	255	40
		First Floo	r		
8	Class Room (FFB-01)	28.1	44	244	43
9	Computer Centre	26.4	44	310	43
10	Robotics & Mech.Lab	27	45	305	39
11	Class Room (FFB-05)	27.2	46	289	42
12	Applied Mechanics Lab	27.6	46	250	43
13	Principal Office	26.4	43	270	39
14	Drawing Hall	27.5	44	285	41
		Second Flo	or		
15	Class Room (SFB-01)	30.1	44	244	41
16	Class Room (SFC-09)	30.1	44.8	251	40
17	Computer Centre	29.1	44.8	244	41
18	Language Lab	28.4	44	240	41
19	TOM Lab	28	44	230	40
20	Class Room (SFB-09)	29.6	43.9	245	41
21	Seminar Hall (SFB-12)	30.1	43.5	250	40
22	Class Room (SFB-11)	30.1	44	250	40
23	Maximum	30.1	46	310	43
24	Minimum	26.4	42	210	39

CHAPTER VI STUDY OF WASTE MANAGEMENT

6.1 Segregation of Waste at Source:

The Waste is segregated at source in separate Waste Bins & is handed over for further action.

Photograph of Waste Collection Bins:

6.2 Bio Composting Pit:

The Institute has a Bio Composting Pit, to convert the Leafy Waste into Bio Compost.

6.3 Liquid Waste Management:

The Institute has installed Sewage Treatment Plant. The treated Water is used for gardening purpose.

6.4 Sanitary Waste Management:

The Institute has installed Sanitary Waste Incinerator, for disposal of the Sanitary Waste.

Page 1

6.5 E Waste Management:

It is recommended to dispose of the E Waste through Authorized Agency.

CHAPTER-VII STUDY OF RAIN WATER MANAGEMENT

The Institute has implemented the Rain Water Management Project. The Institute has installed Pipes from the terrace and the Rain water falling on the terrace is gathered and is used for recharging the bore well and recharge land water table.

Photograph of Rain Water Management Pipe Section:

Page 19

CHAPTER-VIII STUDY OF ECO FRIENDLY INITIATIVES

8.1 Internal Tree Plantation:

The Institute has well maintained landscaped garden in the campus. Photograph of Tree plantation:

8.2 Creation of Awareness about Energy Conservation:

The Institute has displayed posters emphasizing on importance of Energy Conservation.

Photograph of Poster on Energy Conservation:

ANNEXURE-I: VARIOUS AIR QUALITY, WATER QUALITY, NOISE & INDOOR COMFORT STANDARDS:

No	Category	AQI Value	Concentration Range, PM 2.5	Concentration Range, PM 10
1	Good	0 to 50	0 to 30	0 to 50
2	Satisfactory	51 to 100	31 to 60	51 to 100
3	Moderately Polluted	101 to 200	61 to 90	101 to 250
4	Poor	201 to 300	91 to 120	251 to 350
5	Very Poor	301 to 400	121 to 250	351 to 430
6	Severe	401 to 500	250 +	430 +

1. Category Wise Air Quality Index Values & Concentration of PM 2.5 & PM10:

2. Recommended Water Quality Standards:

No	Designated Best Use	Criteria
1	Drinking Water Source without conventional Treatment but after disinfection	pH between 6.5 to 8.5 Dissolved Oxygen 6 mg/l or more
2	Drinking water source after conventional treatment and disinfection	pH between 6 to 9 Dissolved Oxygen 4 mg/l or more
3	Outdoor Bathing (Organized)	pH between 6.5 to 8.5 Dissolved Oxygen 5 mg/l or more
4	Controlled Waste Disposal	pH between 6 to 8.5

Page

No	Location	Noise Level dB
1	Auditoriums	20-25
2	Outdoor Playground	55
3	Occupied Class Room	40-45
4	Un occupied Class Room	35
5	Apartment, Homes	35-40
6	Offices	45-50
7	Libraries	35-40
8	Restaurants	50-55

3. Recommended Noise Level Standards:

4. Thermal Comfort Conditions: For Non-conditioned Buildings:

No	Parameter	Value
1	Temperature	Less Than 33°C
2	Humidity	Less Than 70%

Page

GREEN AUDIT REPORT

of

Shiksha Mandal's BAJAJ INSTITUTE OF ENGINEERING, PIPRI WARDHA

Year: 2022-23

Prepared by:

ENGRESS SERVICES

Yashashree, 26, Nirmal Bag Society Near Muktangan English School, Parvati, Pune 411009 Phone: 09890444795 Email: engress123@gmail.com

ENGRESS SERVICES

Yashashree, 26, Nirmal Bag Society, Near Muktangan English School, Parvati, Pune 411 009 Tel: 09890444795 Email: engress123@gmail.com MEDA Registration No: ECN/2022-23/CR-43/1709 ISO: 9001-2015 Certified (Cert No: 23EQKC13), ISO: 14001-2015 Certified (Cert No: 23EEKW20)

GREEN AUDIT CERTIFICATE

Certificate No: ES/BIT/22-23/02

Date: 20/05/2023

This is to certify that we have conducted Green Audit at Bajaj Institute of Technology, Pipri Wardha, in the Year 2022-23.

The Institute has adopted following Energy Efficient & Green Practices:

- Usage of Energy Efficient LED Light Fitting
- Segregation of Waste at Source
- Installation of Bio Composting Pit
- Installation of Sewage Treatment Plant
- Installation Sanitary Waste Incinerator
- Installation of Rain Water Management Project
- Maintenance of good Internal Road
- Tree Plantation in the campus
- Provision of Ramp for Divyangajan
- Creation of awareness by display of Posters on Resource Conservation

We appreciate the support of Management, involvement of faculty members and students in the process of Energy Conservation & making the campus Green.

For Engress Services,

Amherde

A Y Mehendale, B E- Mech, M Tech-Energy, Certified Energy Auditor, EA-8192 ASSOCHAM GEM Certified Professional: GEM: 22/788

MEDA Registration Certificate

ISO: 9001-2015 Certificate

GEM Certified Professional Certificate

ISO: 14001-2015 Certificate

Sr. No	Particulars	Page No
1	Acknowledgement	5
11	Executive Summary	6
Ш	Abbreviations	8
1	Introduction	9
2	Study of Energy Consumption & CO ₂ Emission	10
3	Study of Usage of Renewable Energy	12
4	Study of Waste Management	13
5	Study of Rain Water Management	15
6	Study of Green & Sustainable Practices	16
	Annexure	
1	List of Trees & Plants	18

INDEX

ACKNOWLEDGEMENT

We Engress Services, Pune, express our sincere gratitude to the management Bajaj Institute of Technology, Pipri Wardha for awarding us the assignment of Green Audit of their Campus for the Year: 2022-23.

Page 5

We are thankful to all the staff members for helping us during the field study.

EXECUTIVE SUMMARY

 Bajaj Institute of Technology, Pipri Wardha consumes Energy in the form of Electrical Energy; used for various Electrical Equipment, office & other facilities.

2. Present Energy Consumption & CO₂ Emission:

No	Particulars	Value	Unit
1	Annual Energy Consumption	129622	kWh
2	Annual CO ₂ Emissions	116.66	MT

3. Renewable Energy & Energy Efficiency Projects:

- Usage of Energy Efficient LED Fittings
- Usage of Energy Efficient BEE STAR Rated equipment
- Maximum usage of Day Lighting
- Installation of 2000 LPD Solar Thermal Water Heating System
- 4. Waste Management:

5.1 Segregation of Waste at Source:

The Waste is segregated at source in separate Waste Bins & is handed over for further action.

5.2 Bio Composting Pit:

The Institute has a Bio Composting Pit, to convert the Leafy Waste into Bio Compost.

5.3 Liquid Waste Management:

The Institute has installed Sewage Treatment Plant. The treated Water is used for gardening purpose.

5.4 Sanitary Waste Management:

The Institute has installed Sanitary Waste Incinerator, for disposal of the Sanitary Waste.

5.5 E Waste Management:

It is recommended to dispose of the E Waste through Authorized Agency.

6. Rain Water Management:

The Institute has installed the Rainwater Management project; the rain water falling on the terrace is collected through pipes and is used for recharging the land water table.

7. Green & Sustainable Practices:

- Maintenance of good Internal Road
- > Maintenance of Internal Garden: 3000 plus Trees in the campus.
- Provision of Ramp for Divyangajan
- > Creation of awareness on Resource Conservation Display of Posters

8. Assumption:

1. 1 kWh of Electrical Energy releases 0.9 Kg of CO2into atmosphere

9. Reference:

For CO₂ Emissions: <u>www.tatapower.com</u>

ABBREVIATIONS

BEE	Bureau of Energy Efficiency
kWh	Kilo Watt Hour
LPD	Liters Per Day
Kg	Kilo Gram
MT	Metric Ton
CO ₂	Carbon Di Oxide
Qty	Quantity

Engress Services, Pune

SE

Page 8

CHAPTER-I INTRODUCTION

1.1 Introduction:

A Green Audit is conducted at Bajaj Institute of Technology, Pipri Wardha.

1.2 Audit Procedural Steps:

1.3 Institute Location Image:

CHAPTER-II STUDY OF ENERGY CONSUMPTION & CO₂ EMISSION

A Carbon Foot print is defined as the Total Greenhouse Gas emissions, emitted due to various activities. In this we compute the emissions of Carbon-Di-Oxide, by usage of the various forms of Energy used by the Institute for performing its day to day activities

The Institute uses Electrical Energy for various Electrical gadgets.

Basis for computation of CO₂ Emissions:

The basis of Calculation for CO2 emissions due to Electrical Energy is as under

1 kWh of Electrical Energy releases 0.9 Kg of CO₂ into atmosphere

Based on the above Data we compute the CO₂ emissions which are being released in to the atmosphere by the Institute due to its Day to Day operations

Table No 1: Month wise CO₂ Emissions:

No	Month	Energy Consumed, kWh	CO2 Emissions, MT
1	Apr-22	9039	8.13
2	May-22	6626	5.96
3	Jun-22	6940	6.24
4	Jul-22	7371	6.63
5	Aug-22	7192	6.47
6	Sep-22	7576	6.81
7	Oct-22	8299	7.46
8	Nov-22	8944	8.04
9	Dec-22	7786	7.00
10	Jan-23	18092	16.28
11	Feb-23	23344	21.00
12	Mar-23	18413	16.57
13	Total	129622	116.66
14	Maximum	23344	21.00
15	Minimum	6626	5.96
16	Average	10801.8	9.721

Table No 2: Important Parameters:

No	Parameter/ Value	Energy Generated (kWh)	Energy Purchased (kWh)
1	Total	129622	116.66
2	Maximum	23344	21.00
3	Minimum	6626	5.96
4	Average	10801.8	9.721

CHAPTER III STUDY OF USAGE OF RENEWABLE ENERGY

The Institute has installed Solar Thermal Water Heating System at the Hostel Blocks as well as Staff Quarters.

It is recommended to install Roof Top Solar PV Plant.

The details of Solar Thermal Water Heating Capacities are:

On Girls Hostel Block: 2000 LPD

Photograph of Solar Thermal Water Heating System:

Page

CHAPTER IV STUDY OF WASTE MANAGEMENT

4.1 Segregation of Waste at Source:

The Waste is segregated at source in separate Waste Bins & is handed over for further action.

Photograph of Waste Collection Bins:

4.2 Bio Composting Pit:

The Institute has a Bio Composting Pit, to convert the Leafy Waste into Bio Compost.

4.3 Liquid Waste Management:

The Institute has installed Sewage Treatment Plant. The treated Water is used for gardening purpose.

Page 13

4.4 Sanitary Waste Management:

The Institute has installed Sanitary Waste Incinerator for disposal of the Sanitary Waste.

4.5 E Waste Management:

It is recommended to dispose of the E Waste through Authorized Agency.

CHAPTER V STUDY OF RAIN WATER MANAGEMENT

The Institute has implemented the Rain Water Management Project. The Institute has installed Pipes from the terrace and the Rain water falling on the terrace is gathered and is used for recharging the bore well and recharge land water table.

Photograph of Rain Water Management Pipe Section:

Page

CHAPTER VI STUDY OF GREEN & SUSTAINABLE PRACTICES

6.1 Pedestrian Friendly Road & Internal Tree Plantation:

The Institute has well maintained internal road to facilitate the easy movement of the students within the campus. The Institute has well maintained landscaped garden in the campus.

Photograph of Internal Road & Tree plantation:

6.2 Provision of Ramp and Lift for Divyangajan:

For easy movement of Divyangajan, the Institute has made provision of Ramp and Lift. Photograph of Ramp:

6.3 Creation of Awareness about Energy Conservation:

The College has displayed posters emphasizing on importance of Energy Conservation awareness.

Photograph of Poster on Energy Conservation awareness:

6.4 Tree Plantation:

Tree plantation event was organized in the campus under NSS Unit. Photograph of Tree Plantation in the Campus:

ade

ANNEXURE-1: LIST OF TREES & PLANTS IN THE CAMPUS:

Presently the College Campus has more than 3000 trees some are listed below::

Common Name of plant	Botanical Name of Plant	
Cycas	Cycas revoluta	
Coconut	Cocos nucifera (L.)	
Areca Palm	Dypsis lutescens	
Mango	Mangifera indica	
Custard apple	Annona squamosa L.	
Teak	Tectona grandis	
Chafa	Plumeria alba	
Neem	Azadirachta indica	
Ficus	Ficus benghalensis	
Saptaparni	Alstonia scholaris	
Cassia	Cassia fistula	
Gulmohar	Delonix regia	
Kachnar	Bauhinia variegata	
Karanj	Pongamia pinnata	
Jatropha	Jatropha integerrima	
Tecoma	Tecoma stans	
Ornamental Fucus	Ficus benghalensis	
Bougainvillia	Bauhinia variegata	
Ficus (Umbar)	Ficus racemosa	
Canna	Canna indica	
Nerium	Nerium indicum	
Ashoka	Saraca asoca	
Agave	Agave angustifolia	
Sadaphuli	Catharanthus roseus	